首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
This paper investigates the issue of almost sure cluster synchronization in nonlinearly coupled complex networks with nonidentical nodes and time-varying delay. These networks are modulated by a continuous-time Markov chain and disturbed by a Brownian movement. The decentralized adaptive update law and pinning control protocol are employed in designing controllers for guaranteeing almost sure cluster synchronization. By constructing a novel stochastic Lyapunov–Krasovskii function and using the stochastic Lasalle-type invariance theorem, some sufficient conditions for almost sure cluster synchronization of the networks are derived. Finally, a numerical example is given to testify the effectiveness of the theoretical results.  相似文献   

2.
Cluster synchronization is investigated for complex networks via linear and adaptive feedback control strategies. It is shown that two different controllers can be designed to achieve the cluster synchronization. Unlike most existing papers, we need not nondelayed and delayed coupling matrices to be symmetric or irreducible. Finally, two examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

3.
Cai  Guoliang  Jiang  Shengqin  Cai  Shuiming  Tian  Lixin 《Nonlinear dynamics》2015,80(1-2):503-513
Nonlinear Dynamics - This paper addresses the scheme of cluster synchronization of overlapping uncertain complex networks with time-varying impulse disturbances. Many existing works on cluster...  相似文献   

4.
Outer synchronization between the drive network and the response network has attracted much more attention in various fields of science and engineering. In this paper, mixed outer synchronization between two complex dynamical networks with nonidentical nodes and output coupling is investigated via impulsive hybrid control, that is, an adaptive feedback controller with impulsive control effects. Moreover, both the cases of complex networks without and with coupling delay are considered. According to the stability analysis of the impulsive functional differential equation, several sufficient conditions for the networks to achieve mixed outer synchronization are derived. Numerical examples are presented finally to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

5.
In this paper, the analysis problem of adaptive exponential synchronization in pth moment is considered for stochastic complex networks with time varying multi-delayed coupling. By using the Lyapunov–Krasovskii functional, stochastic analysis theory, several sufficient conditions to ensure the mode adaptive exponential synchronization in pth moment for stochastic delayed complex networks are derived. To illustrate the effectiveness of the synchronization conditions derived in this paper, a numerical example is finally provided.  相似文献   

6.
This paper deals with the synchronization problem of complex dynamical networks with interval time-varying coupling delays. A simple local linear feedback controller is introduced to guarantee the synchronizability of the networks. Some delay-dependent synchronization conditions for the controlled complex dynamical networks are presented by using the Lyapunov–Krasovskii functional method and the reciprocally convex combination approach. Theoretical analysis and numerical examples show that the obtained conditions have less computational complexity and less conservatism than some recently reported ones.  相似文献   

7.
Wang  Xin  She  Kun  Zhong  Shouming  Yang  Huilan 《Nonlinear dynamics》2017,88(4):2771-2782
Nonlinear Dynamics - This paper studies the exponential cluster synchronization problem of complex dynamical networks with delayed couplings and nonidentical nodes. A new type of pinning impulsive...  相似文献   

8.
Spatiotemporal chaos synchronization between uncertain complex networks with diverse structures is investigated. The identification law of unknown parameters and the adaptive law of the configuration matrix element in state equations of network nodes are determined based on stability theory, and the conditions of realizing spatiotemporal chaos synchronization between uncertain complex networks with different structures are discussed and obtained. Further, the Fisher–Kolmogorov system with spatiotemporal chaotic behavior is taken as the nodes of drive and response networks to imitate the experiment. It is found that the synchronization performance between two networks is very stable.  相似文献   

9.
The spatiotemporal chaos synchronization among complex networks with diverse structures is investigated. The spatiotemporal chaos systems are taken as the nodes of networks and constructed as some networks with diverse structures. The conditions of global synchronization among networks and the coupling function to be determined among diverse networks are discussed and confirmed based on stability theory. The Burgers equation with many practice physics processes, such as turbulent flow and heat-transfer, is adopted for example to imitate the experiment. It is found that the synchronization performance among all networks is very stable.  相似文献   

10.
In this paper, we investigate the cluster synchronization problem for networks with nonlinearly coupled nonidentical dynamical systems and asymmetrical coupling matrix by using pinning control. We derive sufficient conditions for cluster synchronization for any initial values through a feedback scheme and propose an adaptive feedback algorithm that adjusts the coupling strength. Some numerical examples are then given to illustrate the theoretical results.  相似文献   

11.
This paper investigates the problem of pinning cluster synchronization for colored community networks via adaptive aperiodically intermittent control. Firstly, a general colored community network model is proposed, where the isolated nodes can interact through different kinds of connections in different communities and the interactions between different pair of communities can also be different, and moreover, the nodes in different communities can have different state dimensions. Then, an adaptive aperiodically intermittent control strategy combined with pinning scheme is developed to realize cluster synchronization of such colored community network. By introducing a novel piecewise continuous auxiliary function, some globally exponential cluster synchronization criteria are rigorously derived according to Lyapunov stability theory and piecewise analysis approach. Based on the derived criteria, a guideline to illustrate which nodes in each community should be preferentially pinned is given. It is noted that the adaptive intermittent pinning control is aperiodic, in which both control width and control period are allowed to be variable. Finally, a numerical example is provided to show the effectiveness of the theoretical results obtained.  相似文献   

12.
复杂网络的同步: 理论、方法、应用与展望   总被引:4,自引:0,他引:4  
吕金虎 《力学进展》2008,38(6):713-722
复杂网络随处可见, 如互联网、电力网络、商业网络、生物神经网络、社会关系网等. 这些复杂网络与我们的生活息息相关, 对它们的深入研究不但会促进许多重要科学分支的发展而且可能引起人类社会生活方式的根本变革. 同步是自然界中广泛存在的一类非常重要的非线性现象, 复杂网络展示了丰富多彩的网络同步现象. 在过去10年里, 不同研究领域的学者从不同的角度广泛而深入地开展了复杂网络同步的研究. 本文简要的回顾国内外过去10年在复杂网络同步领域的主要研究进展, 包括理论、方法、应用与展望, 试图推进国内复杂网络同步的研究.   相似文献   

13.
Previous experiments by Li and Juniper (2013) have shown that a hydrodynamically self-excited jet can synchronize with external acoustic forcing via one of two possible routes: a saddle-node (SN) bifurcation or a torus-death (TD) bifurcation. In this study, we use complex networks to analyze and forecast these two routes to synchronization in a prototypical self-excited flow – an axisymmetric low-density jet at an operating condition close to its first Hopf point. We build the complex networks using two different methods: the visibility algorithm and the recurrence condition. We find that the networks built with the visibility algorithm are high-clustering, hierarchical, and assortative in the degree of their vertices, although only the TD networks are scale free. Nevertheless, we find that the assortativity coefficient is a sufficiently sensitive indicator by which to distinguish between the SN and TD routes to synchronization and to forecast the onset of synchronization. As for the networks built with the recurrence condition, we find that their topological features differ between the two routes to synchronization, but vary predictably along either route. We quantify these variations using statistical measures such as the mean degree, spectral radius, and transitivity dimension. This study shows that complex networks can be a useful tool for distinguishing between the SN and TD routes to synchronization, and for forecasting the proximity of a system to its synchronization boundaries. These findings could open up new opportunities for complex networks to be used in the development of open-loop control strategies for hydrodynamically self-excited flows.  相似文献   

14.
This paper investigates the adaptive-impulsive projective synchronization of drive-response delayed complex dynamical networks with time-varying coupling, in which the weights of links between two connected nodes are time varying. By the stability analysis of the impulsive functional differential equation, the sufficient conditions for achieving projective synchronization are obtained, and a hybrid controller, that is, an adaptive feedback controller with impulsive control effects is designed. The numerical examples are presented to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

15.
We investigate the synchronization ability between complex networks and propose a near optimal connection strategy based on one connection. Numerical simulations on scale-free, small-world and random network are presented to prove the effectiveness of the proposed strategy. Furthermore, we find that the synchronization ability of the networks can be improved more largely by enhancing inter-network coupling strength than by enhancing intra-network coupling strength. We find that there is an upper limit for the synchronization ability of the complex networks, and we analyze the corresponding reason.  相似文献   

16.
A fractional-order weighted complex network consists of a number of nodes, which are the fractional-order chaotic systems, and weighted connections between the nodes. In this paper, we investigate generalized chaotic synchronization of the general fractional-order weighted complex dynamical networks with nonidentical nodes. The well-studied integer-order complex networks are the special cases of the fractional-order ones. Based on the stability theory of linear fraction-order systems, the nonlinear controllers are designed to make the fractional-order complex dynamical networks with distinct nodes asymptotically synchronize onto any smooth goal dynamics. Numerical simulations are provided to verify the theoretical results. It is worth noting that the synchronization effect sensitively depends on both the fractional order ?? and the feedback gain k i . Moreover, generalized synchronization of the fractional-order weighted networks can still be achieved effectively with the existence of noise perturbation.  相似文献   

17.
This paper mainly investigates the projective and lag synchronization between general complex networks via impulsive control. A general drive complex network and an impulsively controlled slave network are presented in the model. Specially, the coupling matrix in this model is not assumed to be symmetric, diffusive or irreducible. Some criteria and corollaries are, respectively, derived for the projective synchronization and lag synchronization between the presented impulsively controlled complex networks. Finally, the results are illustrated by complex networks composed of the chaotic Lorenz systems. All the numerical simulations verify the correctness of the theoretical results.  相似文献   

18.
In this paper, based on the theory of stochastic differential equations, we study the outer synchronization between two different complex dynamical networks with noise coupling. The theoretical result shows that two different complex networks can achieve generalized outer synchronization only with white-noise-based coupling. Numerical examples further verify the effectiveness and feasibility of the theoretical results. Numerical evidence shows that the synchronization rate is proportional to the noise intensity.  相似文献   

19.
This paper investigates the mean-square exponential synchronization problem of complex dynamical networks with Markovian jumping and randomly occurring parameter uncertainties. The considered Markovian transition rates are assumed to be partially unknown. The parameter uncertainties are considered to be random occurrence and norm-bounded, and the randomly occurring parameter uncertainties obey certain Bernoulli-distributed white noise sequences. Based on the Lyapunov method and stochastic analysis, by designing mode-dependent feedback controller, some sufficient conditions are presented to ensure the mean-square exponential synchronization of Markovian jumping complex dynamical networks with partly unknown transition rates and randomly occurring parameter uncertainties. Numerical examples are given to demonstrate the validity of the theoretical results.  相似文献   

20.
This paper investigates the output synchronization of a class of impulsive complex dynamical networks with time-varying delay. By constructing suitable Lyapunov functionals, some new and useful conditions are obtained to guarantee the local and global exponential output synchronization of the impulsive complex networks. Finally, numerical examples are given to demonstrate the effectiveness of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号