首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion and chemical reactions inside the catalyst particles and the heterogeneous flow structure in the computational cells are key factors to affect the accuracy of the coarse-grid simulation in circulating fluidized bed (CFB) methanation reactors. In this work, a particle-scale model is developed to calculate the effective reaction rate considering the transient diffusion and chemical reactions in the particle scale, i.e., the scale of the single catalyst particle. A modified sub-grid drag model is proposed to consider the effects of the meso-scale and chemical reactions on the heterogeneous gas-solid interaction, where the meso-scale is between the single particle and the whole reactor and featured with the particle cluster. Subsequently, a coupled model is developed by integrating the particle-scale and modified sub-grid drag models into CFD. Moreover, the coupled model is validated to achieve accurate predictions on the CO methanation process in a CFB riser. Notably, the coupled model can be performed with a coarse grid (∼58 times particle diameter) and a large time step (0.005 s) to accelerate the simulation. By simply changing the reaction kinetics, different gas-solid catalytic reaction systems can be simulated by using the coupled model.  相似文献   

2.
In this study, a CFD model coupled with heterogeneous flow structure, mass transfer equations, and chemical reaction kinetics is established to forecast the pyrolusite reduction reaction behavior. Compared with the previous studies which ignore the volume change of solids phase, the influence of volume shrinkage on reaction and flow behavior is explored in this research. Volume shrinkage of pyrolusite is proved to be non-negligible in predicting the conversion rate. The negligence of volume shrinkage leads to the overestimation of conversion rate for its inaccurate estimation of surface area for reaction. Besides, the influence of volume shrinkage on the reaction is found smaller in the scaled-up reactor.  相似文献   

3.
This work investigates the scale-up of chemical looping combustion (CLC), a next-generation technology for carbon capture and storage, to the industrial scale. The study focused on the bottom bed of the unit, which was considered to be the critical region during scale-up due to the large solids inventory in this zone combined with relatively inefficient gas–solids contact. Two CLC reactors of vastly different sizes (bench and utility scale) were studied to discern their difference related to scale-up via a one-dimensional model. This model considered kinetics that varied with the degree of oxidation and population distribution of the oxygen carriers, the mixing of which accounts for both convective and dispersive transport. The model was validated against bench scale data, and was used to evaluate the performance of a 1000 MWth CLC fuel reactor using either syngas or methane as fuels. Sensitivity analyses were also carried out with this model to determine the effects of several parameters on fuel conversion, including solids circulation, oxygen carrier reactivity, bed height, and maximum bubble size. The results show that the mass transfer of gas from bubbles to the emulsion phase represents a significant limiting factor for fuel conversion in the bottom bed of a utility scale fuel reactor.  相似文献   

4.
Resolving hydrogen related safety issues, pertaining to nuclear reactor safety has been an important area of research world over for the past decade. The studies on hydrogen transport behavior and development of hydrogen mitigation systems are still being pursued actively in various research labs, including Bhabha Atomic Research Centre (BARC), in India. The passive autocatalytic recombiner (PAR) is one of such hydrogen mitigating device consisting of catalyst surfaces arranged in an open-ended enclosure. In the plate type recombiner design sheets made of stainless steel and coated with platinum catalyst material are arranged in parallel inside a flow channel. The catalyst elements are exposed to a constant flow of a mixture of air, hydrogen and steam, a catalytic reaction occurs spontaneously at the catalyst surfaces and the heat of reaction produces natural convection flow through the enclosure. Numerical simulation and experiments are required for an in-depth knowledge of such plate type PAR. Specific finite volume based in-house 2D computational fluid dynamics (CFD) code has been developed to model and analyse the working of these recombiners and has been used to simulate one literature quoted experiment. The validation results were in good agreement against literature quoted German REKO experiments. Parametric study has been performed for particular recombiner geometry for various inlet conditions. Salient features of the simplified CFD model developed at BARC and results of the present model calculations are presented in this paper.  相似文献   

5.
6.
Multidimensional numerical modeling and in situ spatially-resolved measurements of gas-phase thermoscalars over the catalyst boundary layer have fostered fundamental investigation of the heterogeneous and homogeneous chemical reaction pathways and their coupling at realistic operating conditions. The methodology for validating catalytic and gas-phase reaction mechanisms is firstly outlined for industrially-relevant fuels. Combination of advanced modeling and in situ near-wall species and velocity measurements is then used to address the intricate interplay between interphase fluid transport (laminar or turbulent) and hetero-/homogeneous kinetics. Controlling parameters of this interplay are the homogeneous ignition chemistry, flame propagation characteristics, competition between the catalytic and gaseous pathways for fuel consumption, diffusional imbalance of the limiting reactant, flow laminarization due to heat transfer from the hot catalytic walls, and fuel leakage through the gaseous reaction zone. Dynamic reactor operation and intrinsic flame dynamics driven by interactions between homogeneous kinetics and catalytic walls are outlined using detailed transient simulation. It is shown that the presence of catalytic reactions moderates flame instabilities. Future directions for transient modeling and for temporally-resolved in situ near-wall measurements are finally summarized.  相似文献   

7.
Experimental and numerical results are presented from investigations into the hydrodynamics of a bench scale bubble column reactor. Countercurrent bubble column reactors are most commonly used in water disinfection for effecting mass transfer of ozone to the aqueous phase. In the reactor column used in this study, gas is introduced at the bottom of the column via a spherical diffuser and water is introduced to the top of the column through a manifold packed with glass spheres. Residence time distribution (RTD) studies were conducted for a range of gas flow rates chosen to span the dispersed flow bubble regime. A multiphase computational fluid dynamics (CFD) model was used to simulate the flow in the bubble column and to gain insights into the fluid dynamics of countercurrent flow bubble columns. The CFD model accurately predicted trends in mixing. Use of CFD in bubble column design and scale-up thus may yield better designs than those based on empirical relations.  相似文献   

8.
Research on NOx treatment is extensive in recent years due to growing environmental awareness. Selec- tive catalytic reduction (SCR) of NOx, as a proven technology, offers higher NOx control efficiency than many other NOx treatment methods. The present work reviews the recent development of SCR reactor technologies. Firstly, catalysts and mechanism of different SCRs were briefly summarized. Different SCR reactors, e.g. structured reactor, fluidized bed reactor and moving bed reactor, were then discussed. As a more advanced technology, multifunctional reactors were also developed for SCR process and could be divided into two categories: decoupled adsorption-reaction process and combined SCR system. The mechanism and properties of these processes were discussed in detail. Some recommendations were given for the future work in SCR reactor design. SCR reactor technology for emerging energy processes was also addressed, such as oxyfuel combustion and biofuel conversion processes, which put forward new requirements for SCR technologies and also open new opportunities for advanced design of SCR reactors.  相似文献   

9.
Computational and experimental study of annular photo-reactor hydrodynamics   总被引:1,自引:0,他引:1  
The performance of ultraviolet (UV) reactors used for water treatment is greatly influenced by the reactor hydrodynamics due to the non-homogeneity of the radiation field. Reliable modeling of the reactor flow structures is therefore crucial for the design process. In this study, the turbulent flow through two characteristic annular UV-reactor configurations, with inlets concentric (L-shape) and normal (U-shape) to the reactor axis, was investigated through computational fluid dynamic (CFD). The modeling results were evaluated with the velocity profiles from particle image velocimetry (PIV) experiments. The influence of mesh structure and density, as well as three turbulence models: Standard κ, Realizable κ, and Reynolds stress model (RSM), on the simulation results were evaluated. Mesh-independent solutions were achieved at mean cell volumes of 5 × 10−9 m3. The Realizable κ displayed the best overall match to the experimental PIV measurements. In general, the CFD models showed a close agreement with the experimental data for the majority of the reactor domain and captured the influences of reactor configuration and internal reactor structures on the flow distribution. The validated CFD hydrodynamic models could be integrated with kinetic and radiation distribution models for UV-reactor performance simulation.  相似文献   

10.
A computational fluid dynamics (CFD) model of the pyrolysis of a Loy Yang low-rank coal in a pressurised drop tube furnace (pdtf) was undertaken evaluating Arrhenius reaction rate constants. The paper also presents predictions of an isothermal flow through the drop tube furnace. In this study, a pdtf reactor operated at pressures up to 15 bar and at a temperature of 1,173 K with particle heating rates of approximately 105 K s?1 was used. The CFD model consists of two geometrical sections; flow straightner and injector. The single reaction and two competing reaction models were employed for this numerical investigation of the pyrolysis process. The results are validated against the available experimental data in terms of velocity profiles for the drop tube furnace and the particle mass loss versus particle residence times. The isothermal flow results showed reasonable agreement with the available experimental data at different locations from the injector tip. The predicted results of both the single reaction and competing reaction modes showed slightly different results. In addition, several reaction rate constants were tested and validated against the available experimental data. The most accurate results were being Badzioch and Hawksley (Ind Eng Chem Process Des Dev 9:521–530, 1970) with a single reaction model and Ubhayakar et al. (Symp (Int) Combust 16:427–436, 1977) for two competing reactions. These numerical results can provide useful information towards future modelling of the behaviour of Loy Yang coal in a full scale tangentially-fired furnace.  相似文献   

11.
Experiments and simulations of gas-solid flow in an airlift loop reactor   总被引:1,自引:0,他引:1  
The hydrodynamics in a gas-solid airlift loop reactor was investigated systematically using experimental measurements and CFD simulation.In the experiments,the time averaged parameters,such as solid fraction and particle velocity,were measured by optical fiber probe.In the simulation,the modified Gidaspow drag model accounting for the interparticles clustering was incorporated into the Eulerian-Eulerian CFD model with particulate-phase kinetic theory.Predicted values of solid fraction and particle velocity ...  相似文献   

12.
To obtain the optimal operating conditions of a coupled reactor for pyridine synthesis, reactor modeling process is carried out in this paper. During the modeling process, the flow hydrodynamics, heat transfer behavior, inter-phase mass transfer behavior and reaction kinetics were taken into consideration consequently. Further, a regression program based on least square method was proposed to regress the model parameters. The prediction results agreed well with the experimental results with an average deviation of 5.9%. Finally, by setting suitable aim function, the optimal operating conditions of the coupled reactor for pyridine synthesis were determined.  相似文献   

13.
14.
A 2D model is built on the package of FLUENT to study the effects of radial aspect ratio (R/W), length-to-width ratio (L/W), strain rate (S R), and buoyancy (Ri=Gr/Re 2) on the validation of the simplified 1D model. In the present 2D model, the methane/air homogeneous reaction mechanism of Peters and the methane/air/platinum heterogeneous reaction mechanism of Deutschmann are applied. By comparison between the 1D and 2D numerical results, it is found that the validation of 1D model is highly related with the catalytic stagnation reactor configuration. For length-to-width ratio L/W = 1 configuration, 1D laminar model is applicable when the radial aspect ratio R/W > 0.4. For R/W = 0.6, the reactor exhibited 1D characteristics when L/W < 1. Compared with the temperature and species profiles, the velocity distribution along the axis is more sensitive to the change of radial aspect ratio and length-to-width ratio. With increasing of the strain rate, the flame front goes closer to the catalytic wall surface and the difference between the 1D and 2D results decreases. For a valid 1D simulation, it is recommended that the strain rate should be greater than 20 s-1. The effects of natural convection can be neglected when Ri < 5.  相似文献   

15.
Reactor performance of bubbling fluidized bed (BFB) and turbulent fluidized bed (TFB) was carefully examined and systematically compared using catalytic ozone decomposition as a model reaction, based on a complete mapping of local flow structures and spatial distributions of ozone conversion and solids holdup. TFB clearly has a higher conversion and shows better reactor performance than BFB as a result of the vigorously turbulent flow and the relatively homogeneous gas–solids mixing in TEB. Besides, the intensive interaction between gas and solids in TFB leads to greater gas–solids contact efficiency of TFB over that of BFB. Due to gas bypassing and backmixing caused by bubbling behaviours and two-phase structure, BFB deviates significantly from a plug flow reactor and sometimes from a continuously stirred tank reactor. The flow structures essentially dictate the reactor performance in the low-velocity fluidized beds.  相似文献   

16.
Research on NOx treatment is extensive in recent years due to growing environmental awareness. Selective catalytic reduction (SCR) of NOx, as a proven technology, offers higher NOx control efficiency than many other NOx treatment methods. The present work reviews the recent development of SCR reactor technologies. Firstly, catalysts and mechanism of different SCRs were briefly summarized. Different SCR reactors, e.g. structured reactor, fluidized bed reactor and moving bed reactor, were then discussed. As a more advanced technology, multifunctional reactors were also developed for SCR process and could be divided into two categories: decoupled adsorption-reaction process and combined SCR system. The mechanism and properties of these processes were discussed in detail. Some recommendations were given for the future work in SCR reactor design. SCR reactor technology for emerging energy processes was also addressed, such as oxyfuel combustion and biofuel conversion processes, which put forward new requirements for SCR technologies and also open new opportunities for advanced design of SCR reactors.  相似文献   

17.
This study deals with the phenomena occuring at single-pellet catalyst scale for the oxidative coupling of methane where heat transfer plays an important role. Computational fluid dynamics (CFD) is used for obtaining detailed rate and temperature profiles through the porous catalytic pellet where reaction and diffusion compete. Intra-particle temperature and concentration gradients were taken into account by solving heat transfer coupled with continuity equations in the catalyst pellet. In heat transfer, the energy term due to highly exothermic reaction was considered. Two external programs were successfully implemented into the CFD-code as kinetic and heat of reaction terms. Simulation results showed that reaction was favored at the beginning for the pellet, followed by diffusion predomination. The results of CFD simulation indicate that temperature variation within the catalyst pellet is <2 K due to exothermic oxidation. The results showed further that exothermic oxidation reactions occurred prior to endothermic coupling reaction in the pellet.  相似文献   

18.
The kinetics of the catalytic hydrogenation of d-glucose to produce d-sorbitol was studied in a three-phase laboratory scale reactor. The hydrogenation reactions were performed on activated charcoal supported platinum catalyst in the temperature range 25–65°C and in a constant pressure of 1 atm. The kinetic data were modeled by zero, first and second-order reaction equations. In the operating regimes studied, the results show that the hydrogenation reaction was of a first order with respect to d-glucose concentration. Also the activation energy of the reaction was determined, and found to be 12.33 kJ mole−1. A set of experiment was carried out to test the deactivation of the catalyst, and the results show that the deactivation is slow with the ability of using the catalyst for several times with a small decrease in product yield.  相似文献   

19.
Model reduction methods are relevant when the computation time of a full convection–diffusion–reaction simulation based on detailed chemical reaction mechanisms is too large. In this article, we consider a model reduction approach based on optimization of trajectories and its applicability to realistic combustion models. As many model reduction methods, it identifies points on a slow invariant manifold based on time scale separation in the dynamics of the reaction system. The numerical approximation of points on the manifold is achieved by solving a semi-infinite optimization problem, where the dynamics enter the problem as constraints. The proof of existence of a solution for an arbitrarily chosen dimension of the reduced model (slow manifold) is extended to the case of realistic combustion models including thermochemistry by considering the properties of proper maps. The model reduction approach is finally applied to two models based on realistic reaction mechanisms: ozone decomposition as a small test case and syngas combustion as a test case including all features of a detailed combustion mechanism.  相似文献   

20.
For many processes of industrial significance, due to the strong coupling between particle interactions and fluid dynamics, the population balance must be solved as part of a computational fluid dynamics (CFD) simulation. In this work, a CFD based population balance model is tested using a batch crystallization reactor. In this CFD model, the population balance is solved by the standard method of moments (SMOM) and the quadrature method of moments (QMOM). The results of these simulations are compared to analytical solutions for the population balance in a batch tank where 1) nucleation, 2) growth, 3) aggregation, and 4) breakage are taking place separately. The results of these comparisons show that the first 6 moments of the population balance are accurately predicted for nucleation, growth, aggregation and breakage at all times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号