首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behavior of the flow stress of Al-Cu-Mg-Ag heat-resistant aluminum alloys during hot compression deformation was studied by thermal simulation test. The temperature and the strain rate during hot compression were 340-500 °C, 0.001 s−1 to 10 s−1, respectively. Constitutive equations and an artificial neural network (ANN) model were developed for the analysis and simulation of the flow behavior of the Al-Cu-Mg-Ag alloys. The inputs of the model are temperature, strain rate and strain. The output of the model is the flow stress. Comparison between constitutive equations and ANN results shows that ANN model has a better prediction power than the constitutive equations.  相似文献   

2.
基于对NiTi形状记忆合金的实验观察及有限元分析,考虑两相间的应变不协调关系,采用应变修正法建立了计及片层状微结构的本构模型,本模型考虑了两相间的相互约束,及其约束随微结构演化的变化规律.研究了NiTi形状记忆合金微圆管在拉伸和扭转下的响应特性.计算结果与实验结果的对比表明所建本构模型较好地描述了伪弹性响应尤其是较好地描述了拉伸实验过程中的应力跌落现象.  相似文献   

3.
Recently, a rate-independent, finite-deformation-based crystal mechanics constitutive model for martensitic reorientation and detwinning in shape-memory alloys has been developed by Thamburaja [Thamburaja, P., 2005. Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys. Journal of the Mechanics and Physics of Solids 53, 825–856] and implemented in the ABAQUS/Explicit [Abaqus reference manuals. 2005. Providence, RI] finite-element program. In this work, we show that the aforementioned model is able to quantitatively predict the experimental response of an initially textured and martensitic polycrystalline Ti–Ni rod under a variety of uniaxial and multi-axial stress states. By fitting the material parameters in the model to the stress–strain response in simple tension, the constitutive model predicts the stress–strain curves for experiments conducted under simple compression, torsion, proportional-loading tension–torsion, and path-change tension–torsion loading conditions to good accord. Furthermore the constitutive model also reproduces the force–displacement response for an indentation experiment to reasonable accuracy.  相似文献   

4.
Results from a series of multiaxial loading experiments on the Ti–6Al–4V titanium alloy are presented. Different loading conditions are applied in order to get the comprehensive response of the alloy. The strain rates are varied from the quasi-static to dynamic regimes and the corresponding material responses are obtained. The specimen is deformed to large strains in order to study the material behavior under finite deformation at various strain rates. Torsional Kolsky bar is used to achieve shear strain rates up to 1000 s−1. Experiments are performed under non-proportional loading conditions as well as dynamic torsion followed by dynamic compression at various temperatures. The non-proportional loading experiments comprise of an initial uniaxial loading to a certain level of strain followed by biaxial loading, using a channel-type die at various rates of loadings. All the non-proportional experiments are carried out at room temperature. Experiments are also performed to investigate the anisotropic behavior of the alloy. An orthotropic yield criterion [proposed by Cazacu, O., Plunkett, B., Barlat, F., 2005. Orthotropic yield criterion for hexagonal closed packed metals. International Journal of Plasticity 22, 1171–1194.] for anisotropic hexagonal closed packed materials with strength differential is used to generate the yield surface. Based on the definition of the effective stress of this yield criterion, the observed material response for the different loading conditions under large deformation is modeled using the Khan–Huang–Liang (KHL) equation assuming isotropic hardening. The model constants used in the present study, were pre-determined from the extensive uniaxial experiments presented in the earlier paper [Khan, A.S., Suh, Y.S., Kazmi R., 2004. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. International Journal of Plasticity 20, 2233–2248]. The model predictions are found to be extremely close to the observed material response.  相似文献   

5.
曲杰  覃威  金泉林 《力学学报》2014,46(6):920-930
宏微观耦合本构模型的参数识别往往通过反分析方法进行,为了使参数识别结果具有高的置信度,需要确定合适的参数取值范围. 基于动态再结晶过程的微观机理以及相应本构方程的数学特征,提出一个确定参数取值范围的方法. 首先详细给出考虑动态再结晶的黏塑性本构模型,并根据模型构造物理机理,提出通过6 步确定该模型参数取值范围的方法;其次,对300M 低合金钢进行不同温度、应变速率下的热变形试验,测试宏观的流动应力-应变数据及微观的组织数据;然后应用提出的方法,依据试验数据,确定参数取值范围;最后,基于确定参数取值范围中获得的知识,对模型进行局部修改,使模型模拟结果更接近实验结果.   相似文献   

6.
宏微观耦合本构模型的参数识别往往通过反分析方法进行,为了使参数识别结果具有高的置信度,需要确定合适的参数取值范围. 基于动态再结晶过程的微观机理以及相应本构方程的数学特征,提出一个确定参数取值范围的方法. 首先详细给出考虑动态再结晶的黏塑性本构模型,并根据模型构造物理机理,提出通过6 步确定该模型参数取值范围的方法;其次,对300M 低合金钢进行不同温度、应变速率下的热变形试验,测试宏观的流动应力-应变数据及微观的组织数据;然后应用提出的方法,依据试验数据,确定参数取值范围;最后,基于确定参数取值范围中获得的知识,对模型进行局部修改,使模型模拟结果更接近实验结果.  相似文献   

7.
8.
A micromechanical theory is developed to predict the elastoplastic behavior of a two-phase alloy. Taking crystallographic slip to be the mechanism of plastic deformation, this theory also considers stress redistribution due to elastic and plastic heterogeneity in both phases. The corresponding self-consistent relation for two-phase plasticity was derived combining the spirit of Hill, Hutchinson, and Berveiller & Zaoui. It is found upon applications that both elastic and rigid particles may have a profound effect on the hardening behavior of two-phase systems. When applied to austenite-ferrite stainless steels, the theory also provides reasonable estimates as compared to experiments. The fictitious kink point commonly associated tith the continuum models is seen to be absent due to the gradual yielding of the constituent grains.  相似文献   

9.
In order to predict the high-temperature deformation behavior of Al-Zn-Mg-Cu alloy, the hot compression tests were conducted in the strain rate range of (0.001–0.1)s−1 and the forming temperature range of (573–723) K. Based on the experimental results, Johnson-Cook model was found inadequate to describe the high-temperature deformation behavior of Al-Zn-Mg-Cu alloy. Therefore, a new phenomenological constitutive model is proposed, considering the coupled effects of strain, strain rate and forming temperature on the material flow behavior of Al-Zn-Mg-Cu alloy. In the proposed model, the material constants are presented as functions of strain rate. The proposed constitutive model correlates well with the experimental results confirming that the proposed model can give an accurate and precise estimate of flow stress for the Al-Zn-Mg-Cu alloy investigated in this study.  相似文献   

10.
Prediction of 42CrMo steel flow stress at high temperature and strain rate   总被引:2,自引:0,他引:2  
The compressive deformation behavior of 42CrMo steel was investigated at temperatures ranging from 850 to 1150 °C and strain rates from 0.01 to 50 s−1 on Gleeble-1500 thermo-simulation machine. Based on the classical stress–dislocation relation and the kinematics of the dynamic recrystallization, the flow stress constitutive equations of the work hardening-dynamical recovery period and dynamical recrystallization period were established for 42CrMo steel, respectively. The stress–strain curves of 42CrMo steel predicted by the established models are in good agreement with experimental results when the strain rate is relatively low. So, the proposed deformation constitutive equations can be used to establish the hot formation processing parameters for 42CrMo steel.  相似文献   

11.
A viscoplastic crystal plasticity model is incorporated within the Marciniak–Kuczynski (M–K) approach for forming limit curve prediction. The approach allows for the incorporation of crystallographic texture-induced anisotropy and the evolution of the same. The effects of mechanical twinning on the plastic response and texture evolution are also incorporated. Grain-level constitutive parameters describing the temperature dependent behavior of hexagonal close packed Mg alloy, AZ31B, sheets at discrete temperatures are used as a first application of the model. A trade-off between significant strain hardening behavior at lower temperatures (∼150 °C), and significant strain rate hardening at higher temperatures (∼200 °C) lead to similarities in the predicted forming limits. The actual formability of this alloy depends strongly on temperature within this range, and this distinction with the current modeling is related to more localized instability-based failure mechanisms at the lower temperatures than is assumed in the M–K approach. It is shown that the strain path dependence in the strain hardening response is significant and that it influences the forming limits in a predictable way. For broader applicability, a means of incorporating dynamic recrystallization into the crystal plasticity model is required.  相似文献   

12.
高强度钢板热成形本构理论与实验分析   总被引:1,自引:0,他引:1  
马宁  胡平  武文华  申国哲  郭威 《力学学报》2011,43(2):346-354
热成形(热冲压)过程中硼钢的热、力、相变耦合关系是研究热成形理论的基础, 同时也是决定热成形工艺及数值模拟准确性的关键因素. 对热成形硼钢进行高温拉伸及淬火实验: 硼钢板材试样在奥氏体化(950℃)后保温一定时间, 然后在连续冷却的同时施加拉伸力, 记录此过程中力、位移、膨胀量及温度的变化. 通过对不同冷却速率及不同拉伸力情况下上述物理量的变化规律及微观组织性能的分析, 研究硼钢相变过程中的热、力、相变耦合关系. 建立了硼钢相变过程中的热、力、相变耦合模型. 通过引入混合定律对热成形过程中的多相材料热力学参数和力学性能进行等效分析; 对热成形应变组成及其形成机理进行了分析, 引入了相变体积应力及相变塑性应力等新概念. 硼钢高温流动应力采用修改的Norton-Hoff形式, 并通过实验确定了流动应力的材料常数. 在此基础上将热、力、相变耦合关系引入热成形本构方程中, 分别建立了高强度钢板热成形的全量形式及增量形式本构方程. 对U形零部件热成形过程进行了数值模拟, 并与实验结果进行比较, 结果证明建立的本构理论的有效性.   相似文献   

13.
A stress gradient elasticity theory is developed which is based on the Eringen method to address nonlocal elasticity by means of differential equations. By suitable thermodynamics arguments (involving the free enthalpy instead of the free internal energy), the restrictions on the related constitutive equations are determined, which include the well-known Eringen stress gradient constitutive equations, as well as the associated (so far uncertain) boundary conditions. The proposed theory exhibits complementary characters with respect to the analogous strain gradient elasticity theory. The associated boundary-value problem is shown to admit a unique solution characterized by a Hellinger–Reissner type variational principle. The main differences between the Eringen stress gradient model and the concomitant Aifantis strain gradient model are pointed out. A rigorous formulation of the stress gradient Euler–Bernoulli beam is provided; the response of this beam model is discussed as for its sensitivity to the stress gradient effects and compared with the analogous strain gradient beam model.  相似文献   

14.
形状记忆合金由马氏体相和奥氏体相动态组成,其行为实质上是两相各自行为的动态组合,根据实验现象,假设在一定的变形范围内,马氏体相为弹塑性而奥氏体相为线弹性,基于经典塑性理论和混合物理论,结合Tanaka的相变描述,得到了形状记忆合金的一种本构描述,对不同温度下形状记忆合金Au-47.5at.%Cd的铁弹性、拟弹性和形状记忆特性进行了分析,取得了与实验相吻合的结果。  相似文献   

15.
A novel cyclic deformation test program was undertaken to characterize macroscopic time dependent deformation of a titanium alloy for use in viscoplastic model development. All tests were conducted at a high homologous temperature, 650 °C, where there are large time dependent and loading rate dependent effects. Uninterrupted constant amplitude tests having zero mean stress or a tensile mean stress were conducted using three different control modes: strain amplitude and strain rate, stress amplitude and stress rate, and a hybrid stress amplitude and strain rate. Strain ratcheting occurred for all cyclic tests having a tensile mean stress and no plastic shakedown was observed. The shape of the strain ratcheting curve as a function of time is analogous to a creep curve having primary, steady state and tertiary regions, but the magnitude of the ratchet strains are higher than creep strains would be for a constant stress equal to the mean stress. Strain cycles interrupted with up to eight 2-h stress relaxation periods around the hysteresis loop, including hold times in each quadrant of the stress–strain diagram, were also conducted. Stress relaxation was path-dependent and in some cases the stress relaxed to zero. The cyclic behavior of these interrupted tests was similar even though each cycle was very complex. These results support constitutive model development by providing exploratory, characterization and validation data.  相似文献   

16.
This study examined the constitutive modeling of shape memory polyurethanes (SMPUs). SMPUs exhibit a thermo-responsive shape memory behavior, i.e., a thermally fixed temporary shape at a low temperature that returns to its original (permanent) shape when heated. This unique property arises from the molecular configuration of their hard and soft segments; the latter can form a variable state ranging from a rubbery (active) to rigid (frozen) phase according to temperature, while the former undergoes little deformation and acts as a fixed net between the soft segments. In this study, a three-phase phenomenological model (one hard segment phase and two (active and frozen) soft segment phases) was developed to describe the deformation behavior of SMPUs according to their microstructure. The stress and strain relationships of each phase are described mathematically using one three-element viscoelastic and two Mooney–Rivlin hyperelastic equations, respectively. The total stress was calculated by combining those equations via some internal variables that can track the volume fractions of the active and frozen phases and a non-mechanical frozen strain. For validation, the cyclic thermo-mechanical behavior of a SMPU was predicted. These predictions were compared with the experimental results with reasonable agreement between them.  相似文献   

17.
为了开展激光选区熔化(SLM)增材制造钛合金的动态力学性能研究,分别采用热模拟材料试验机、分离式霍普金森压杆装置对激光选区熔化钛合金在不同温度下进行了准静态和动态压缩实验,并基于实验结果拟合Johnson-Cook本构模型,同时对钛合金在高温、高应变率下的力学行为进行了有限元模拟。结果表明,相对于铸造或锻造钛合金,激光选区熔化钛合金具有更细小、均匀的组织,使其屈服强度有明显的提升,且表现出明显的应变率强化效应和热软化效应。有限元模拟结果与实验有着较高的重合度,进一步验证了本构参数的有效性,为扩大激光选区熔化技术及其产品的应用提供了理论基础。  相似文献   

18.
In this paper, each of the two phases in dense two-phase flow is considered as continuous medium and the fundamental equations for two-phase flow are described in Eulerian form. The generalized constitutive relation of the Bingham fluid is applied to the dispersed phase with the analysis of physical mechanism of dense two-phase flow. The shearing stress of dispersed phase at a wall is used to give a boundary condition. Then a mathematical model for dense two-phase flow is obtained. In addition, the expressions of shearing stress of dispersed phase at a wall is derived according to the fundamental model of the factional collision between dispersed-phase particles and the wall.  相似文献   

19.
A Hashin-Shtrikman-Willis variational principle is employed to derive two exact micromechanics-based nonlocal constitutive equations relating ensemble averages of stress and strain for two-phase, and also many types of multi-phase, random linear elastic composite materials. By exact is meant that the constitutive equations employ the complete spatially-varying ensemble-average strain field, not gradient approximations to it as were employed in the previous, related work of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) and Drugan (J. Mech. Phys. Solids 48 (2000) 1359) (and in other, more phenomenological works). Thus, the nonlocal constitutive equations obtained here are valid for arbitrary ensemble-average strain fields, not restricted to slowly-varying ones as is the case for gradient-approximate nonlocal constitutive equations. One approach presented shows how to solve the integral equations arising from the variational principle directly and exactly, for a special, physically reasonable choice of the homogeneous comparison material. The resulting nonlocal constitutive equation is applicable to composites of arbitrary anisotropy, and arbitrary phase contrast and volume fraction. One exact nonlocal constitutive equation derived using this approach is valid for two-phase composites having any statistically uniform distribution of phases, accounting for up through two-point statistics and arbitrary phase shape. It is also shown that the same approach can be used to derive exact nonlocal constitutive equations for a large class of composites comprised of more than two phases, still permitting arbitrary elastic anisotropy. The second approach presented employs three-dimensional Fourier transforms, resulting in a nonlocal constitutive equation valid for arbitrary choices of the comparison modulus for isotropic composites. This approach is based on use of the general representation of an isotropic fourth-rank tensor function of a vector variable, and its inverse. The exact nonlocal constitutive equations derived from these two approaches are applied to some example cases, directly rationalizing some recently-obtained numerical simulation results and assessing the accuracy of previous results based on gradient-approximate nonlocal constitutive equations.  相似文献   

20.
A two-phase self-consistent model for large deformation stress–strain behavior and strain-induced crystallization in polymers at temperatures above the glass transition temperature is proposed. In this model, a composite framework is utilized to deal with the presence of the two phases, crystalline and amorphous, after the onset of strain-induced crystallization. The plastic behavior of each phase is approached by a widely used viscoplastic power law. The crystallization rate is expressed following a non-isothermal phenomenological expression based on the modified Avrami equation. Our predicted results are compared to the upper and lower bound estimates and to the existing experimental results in which good agreement is found with these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号