首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The turbulent flow in a compound meandering channel with a rectangular cross section is one of the most complicated turbulent flows, because the flow behaviour is influenced by several kinds of forces, including centrifugal forces, pressure‐driven forces and shear stresses generated by momentum transfer between the main channel and the flood plain. Numerical analysis has been performed for the fully developed turbulent flow in a compound meandering open‐channel flow using an algebraic Reynolds stress model. The boundary‐fitted coordinate system is introduced as a method for coordinate transformation in order to set the boundary conditions along the complicated shape of the meandering open channel. The turbulence model consists of transport equations for turbulent energy and dissipation, in conjunction with an algebraic stress model based on the Reynolds stress transport equations. With reference to the pressure–strain term, we have made use of a modified pressure–strain term. The boundary condition of the fluctuating vertical velocity is set to zero not only for the free surface, but also for computational grid points next to the free surface, because experimental results have shown that the fluctuating vertical velocity approaches zero near the free surface. In order to examine the validity of the present numerical method and the turbulent model, the calculated results are compared with experimental data measured by laser Doppler anemometer. In addition, the compound meandering open channel is clarified somewhat based on the calculated results. As a result of the analysis, the present algebraic Reynolds stress model is shown to be able to reasonably predict the turbulent flow in a compound meandering open channel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A numerical analysis has been performed for three‐dimensional developing turbulent flow in a 180° bend tube with straight inlet and outlet section used by an algebraic Reynolds stress model. To our knowledge, numerical investigations, which show the detailed comparison between calculated results and experimental data including distributions of Reynolds stresses, are few and far between. From this point of view, an algebraic Reynolds stress model in conjunction with boundary‐fitted co‐ordinate system is applied to a 180° bend tube in order to predict the anisotropic turbulent structure precisely. Calculated results are compared with the experimental data including distributions of Reynolds stresses. As a result of this analysis, it has been found that the calculated results show a comparatively good agreement with the experimental data of the time‐averaged velocity and the secondary vectors in both the bent tube and straight outlet sections. For example, the location of the maximum streamwise velocity, which appears near the top or bottom wall in the bent tube, is predicted correctly by the present method. As for the comparison of Reynolds stresses, the present method has been found to simulate many characteristic features of streamwise normal stress and shear stresses in the bent tube qualitatively and has a tendency to under‐predict its value quantitatively. Judging from the comparison between the calculated and the experimental results, the algebraic Reynolds stress model is applicable to the developing turbulent flow in a bent tube that is known as a flow with a strong convective effect. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Turbulent flow in a rectangular duct with a sharp 180‐degree turn is difficult to predict numerically because the flow behavior is influenced by several types of forces, including centrifugal force, pressure‐driven force, and shear stress generated by anisotropic turbulence. In particular, this type of flow is characterized by a large‐scale separated flow, and it is difficult to predict the reattachment point of a separated flow. Numerical analysis has been performed for a turbulent flow in a rectangular duct with a sharp 180‐degree turn using the algebraic Reynolds stress model. A boundary‐fitted coordinate system is introduced as a method for coordinate transformation to set the boundary conditions next to complicated shapes. The calculated results are compared with the experimental data, as measured by a laser‐Doppler anemometer, in order to examine the validity of the proposed numerical method and turbulent model. In addition, the possibility of improving the wall function method in the separated flow region is examined by replacing the log‐law velocity profile for a smooth wall with that for a rough wall. The analysis results indicated that the proposed algebraic Reynolds stress model can be used to reasonably predict the turbulent flow in a rectangular duct with a sharp 180‐degree turn. In particular, the calculated reattachment point of a separated flow, which is difficult to predict in a turbulent flow, agrees well with the experimental results. In addition, the calculation results suggest that the wall function method using the log‐law velocity profile for a rough wall over a separated flow region has some potential for improving the prediction accuracy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Shock waves drastically alter the nature of Reynolds stresses in a turbulent flow, and conventional turbulence models cannot reproduce this effect. In the present study, we employ explicit algebraic Reynolds stress model (EARSM) to predict the Reynolds stress anisotropy generated by a shockwave. The model by Wallin and Johansson (2000) is used as the baseline model. It is found to over-predict the post-shock Reynolds stresses in canonical shock turbulence interaction. The budget of the transport equation of Reynolds stresses computed using linear interaction analysis shows that the unsteady shock distortion mechanism and the pressure–velocity correlations are important. We propose improvement to the baseline model using linear interaction analysis results and redistribute the turbulent kinetic energy between the principle Reynolds stresses. The new model matches DNS data for the amplification of Reynolds stresses across the shock and their post-shock evolution, for a range of Mach numbers. It is applied to oblique shock/boundary-layer interaction at Mach 5. Significant improvements are observed in predicting surface pressure and skin friction coefficient, with respect to experimental measurements.  相似文献   

5.
Study on anisotropic buoyant turbulence model   总被引:1,自引:0,他引:1  
Buoyantflowisoneofthefundamentalflows.Thedifferenceofdensitybetweendischargedfluidandtheambientfluidcancausebuoyantturbulentf...  相似文献   

6.
A new Reynolds stress constitutive formula is constructed using the firstorder statistics of turbulent fluctuations instead of the mean strain rate. It includes zero empirical coefficients. The formula is validated with the direct numerical simulation(DNS) data of turbulent channel flow at Reτ =180. The Reynolds stresses given by the proposed formula agree very well with the DNS results. The good agreement persists even after the multi-angle rotation of the coordinate system, indicating the rotation invariance of the formula. The autocorrelation of the fluctuating velocity rather than the mean strain rate is close to the essence of the Reynolds stress.  相似文献   

7.
In this paper, water flow in a rib-roughened channel is investigated numerically by using Reynolds stress turbulence models (RSM) on a three-dimensional (3-D) domain. Computational results for mean streamwise velocity component and turbulent kinetic energy show good agreements with available experimental data. Five rib pitch-to-height ratios (p/h) of 1, 5, 10, 15 and 20 are analysed for six different Reynolds numbers (Re) of 3000, 7000, 12,000, 20,000, 40,000 and 65,000. Velocity vectors, streamlines and Reynolds stresses are showed for these ratios and Re numbers. Streamlines revealed that Reynolds numbers do not affect flowfield but play an important role in the Reynolds stresses.  相似文献   

8.
含污染物的弱弯曲明渠弯道湍流数值模拟   总被引:3,自引:0,他引:3  
建立了可模拟弯道中含污染物湍流的三维部分抛物型代数应力模型。针对左右两岸分别泄放污染物的环流非充分发展弯道流进行了计算。分析了水流结构及污染物浓度分布的特点。  相似文献   

9.
The generalized Langevin model, which is used to model the motion of stochastic particles in the velocity–composition joint probability density function (PDF) method for reacting turbulent flows, has been extended to incorporate solid wall effects. Anisotropy of Reynolds stresses in the near-wall region has been addressed. Numerical experiments have been performed to demonstrate that the forces in the near-wall region of a turbulent flow cause the stochastic particles approachi ng a solid wall to reverse their direction of motion normal to the wall and thereby, leave the near-wall layer. This new boundary treatment has subsequently been implemented in a full-scale problem to prove its validity. The test problem considered here is that of an isothermal, non-reacting turbulent flow in a two-dimensional channel with plug inflow and a fixed back-pressure. An efficient pressure correction method, developed in the spirit of the PISO algorithm, has been implemented. The pressure correction strategy is easy to implement and is completely consistent with the time- marching scheme used for the solution of the Lagrangian momentum equations. The results show remarkable agreement with both k–ϵ and algebraic Reynolds stress model calculations for the primary velocity. The secondary flow velocity and the turbulent moments are in better agreement with the algebraic Reynolds stress model predictions than the k– ϵ predictions. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
A new model for the Reynolds stress equations is presented. This model is used to obtain a theoretical solution for the problem of fully developed turbulent flow in a square duct. Nine governing equations for the axial velocity, lateral vorticity, lateral stream function and six components of the Reynolds stresses are simultaneously solved, by a finite-difference technique. To ensure numerical stability of the solution a special linearised implicit representation of the source terms is proposed, and simultaneous solution of the equations at each.mesh point is obtained. Near the wall a special procedure is used, by which the Reynolds stress equations are assumed to be in local equilibrium, and the velocity profile is assumed to be logarithmic. However, due to the secondary motion the logarithmic velocity profile is inclined to the axial direction. The results bear reasonable agreement with experimental data. Computer time requirements are moderate.  相似文献   

11.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, a second-moment closure model and an algebraic stress and flux model are used to simulate the turbulent dispersion from an elevated line source located in a turbulent boundary layer. In the modeling of the Reynolds stress equation, several models for the triple velocity correlation are examined by comparing their predicting results with the direct numerical simulation data. Predicted mean and fluctuating correlation quantities of velocity and temperature by the second-moment closure model and the algebraic model are compared with the experimental data. From the comparisons, it is found that the second-moment closure is capable of reproducing the experimental results satisfactorily. However, predictions of the algebraic stress and flux model are quite poor. Received on 12 June 1998  相似文献   

13.
A three-dimensional particle tracking velocimeter (3-D PTV) was applied to air-flow measurement in a strongly curved U-bend of a square cross-section. He-filled neutral-buoyant soap bubbles were employed as a flow tracer, and turbulent statistics including all Reynolds stress components were measured. The pressure-induced secondary flow, of which magnitude reached about 30% of the bulk mean velocity, was observed. The present experimental result is mostly in good agreement with the LDA data at higher bulk-mean Reynolds number taken by Chang et al. The effect of the secondary flow on the production mechanism of turbulent kinetic energy as well as on the distributions of the invariants of stress anisotropy tensor was examined in detail. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Using a priori analyses of direct numerical simulation (DNS) data, a Reynolds stress model (RSM) is developed to account for the influence of polymer additives on turbulent flow over a wide range of flow conditions. The Finitely Extensible Nonlinear Elastic-Peterlin (FENE-P) rheological constitutive model is utilized to evaluate the polymer contribution to the stress tensor. Thirteen DNS data sets are used to analyze the budgets of elastic stress–velocity gradient correlations as well as Reynolds stress and dissipation transport. Closures are developed in the framework of the RSM model for all the required unknown and non-linear terms. The polymer stresses, velocity profiles, turbulent flow statistics and the percentage of friction drag reduction predicted by the RSM model are in good agreement with present and those obtained from independent DNS data over a wide range of rheological and flow parameters.  相似文献   

15.
雷诺切应力是壁湍流高摩擦阻力的重要来源, 有理论认为可以通过壁面生成负雷诺应力(数值上为正)的方式来削弱湍流流场中雷诺应力的分布, 以此获得流动减阻. 而通过对雷诺平均运动方程的法向二次积分, 可以发现壁面生成正雷诺应力(数值上为负)对壁面摩擦阻力系数才有负贡献. 文中在湍流边界层流动的控制区域下边界设置一系列倾斜狭缝, 利用该装置通过周期性吹吸的方法产生壁面生成正(负)雷诺应力, 并采用直接数值模拟方法考察和验证上文提到的减阻理论. 文中采用的湍流边界层流动模型, 其流动雷诺数(基于外流速度及动量损失厚度)从300 发展到860. 文中通过多组数值模拟算例, 考察了射流强度和频率对壁面摩擦阻力系数的影响, 并对比了壁面生成正或负雷诺应力对流动的影响. 研究表明, 壁面生成正雷诺应力控制的减阻率能达到3.26, 而壁面生成负雷诺应力控制的减阻效果较壁面生成正雷诺应力控制的要差; 壁面生成的正雷诺应力对壁面摩擦阻力有负贡献, 而壁面生成的负雷诺应力对壁面摩擦阻力有正贡献; 通过考察控制的收支比, 发现控制方案不能获得能量净收益.   相似文献   

16.
We investigate the turbulence modeling of second moment closure used both in RANS and PITM methodologies from a fundamental point of view and its capacity to predict the flow in a low turbulence wind tunnel of small axisymmetric contraction designed by Uberoi and Wallis. This flow presents a complex phenomenon in physics of fluid turbulence. The anisotropy ratio of the turbulent stresses τ 11/τ 22 initially close to 1.4 returns to unity through the contraction, but surprisingly, this ratio gradually increases to its pre-contraction value in the uniform section downstream the contraction. This point constitutes the interesting paradox of the Uberoi and Wallis experiment. We perform numerical simulations of the turbulent flow in this wind tunnel using both a Reynolds stress model developed in RANS modeling and a subfilter scale stress model derived from the partially integrated transport modeling method. With the aim of reproducing the experimental grid turbulence resulting from the effects of the square-mesh biplane grid on the uniform wind tunnel stream, we develop a new analytical spectral method of generation of pseudo-random velocity fields in a cubic box. These velocity fields are then introduced in the channel using a matching numerical technique. Both RANS and PITM simulations are performed on several meshes to study the effects of the contraction on the mean velocity and turbulence. As a result, it is found that the RANS computation using the Reynolds stress model fails to reproduce the increase of anisotropy in the centerline of the channel after passing the contraction. In the contrary, the PITM simulation predicts fairly well this turbulent flow according to the experimental data, and especially, the “return to anisotropy” in the straight section of the channel downstream the contraction. This work shows that the PITM method used in conjunction with an analytical synthetic turbulence generation as inflow is well suited for simulating this flow, while allowing a drastic reduction of the computational resources.  相似文献   

17.
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in straight ducts using the RNG (Re-Normalized Group) turbulence method.

A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts with different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with the RNG κ?ε model and the RNG non-linear κ-ε model of Speziale. The turbulent heat fluxes are modeled by the simple eddy diffusivity (SED) concept, GGDH and WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models arc implemented for an arbitrary three dimensional duct.

Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non-staggered grid arrangement. The pressure-velocity coupling is handled by using the SIMPLEC-algorithm. The convective terms are treated by the QUICK, scheme while the diffusive terms are handled by the central-difference scheme. The hybrid scheme is used for solving the κ and ε equations.

The overall comparison between the models is presented in terms of friction factor and Nusselt number. The secondary flow generation is also of major concern.  相似文献   

18.
The purpose of the study is to present an explicit self-consistent algebraic model of the Reynolds stresses (nonlinear turbulent viscosity) for calculating two-phase flows laden with small heavy particles. The model is tested by means of comparing with the results of the solution of a system of differential equations for all components of the Reynolds stresses and the data of direct numerical calculations in a homogeneous shear flow with particles.  相似文献   

19.
应用一种合理考虑湍流一旋流相互作用及湍流脉动各向异性的新的代数ReynoldS应力模型,对环形通道内的湍流旋流流动进行了数值模拟.研究了旋流数、进口轴向速度和内外半径比等参数对环形通道内湍流旋流流动的影响,以及由此产生的流场变化对强化环形通道内传热的作用.  相似文献   

20.
V. K. Makin 《Fluid Dynamics》1986,21(5):693-697
A numerical model of turbulent air flow over a curved surface is described. The model is based on two-dimensional nonlinear Reynolds equations and continuity equations written in a coordinate system moving with the profile of the curved surface. The Reynolds stresses are represented in the form of the product of the isotropic turbulent viscosity coefficient, which increases linearly with height, and the deformation tensor of the mean velocity field. Flow over a stationary sinusoidal surface and a sinusoidal gravity wave on water is simulated. The structure of the velocity and pressure wave fields is obtained. The differences in flow over stationary and moving surfaces are analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 20–24, September–October, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号