首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Chebyshev collocation method for solving the unsteady two-dimensional Navier–Stokes equations in vorticity–streamfunction variables is presented and discussed. The discretization in time is obtained through a class of semi-implicit finite difference schemes. Thus at each time cycle the problem reduces to a Stokes-type problem which is solved by means of the influence matrix technique leading to the solution of Helmholtz-type equations with Dirichlet boundary conditions. Theoretical results on the stability of the method are given. Then a matrix diagonalization procedure for solving the algebraic system resulting from the Chebyshev collocation approximation of the Helmholtz equation is developed and its accuracy is tested. Numerical results are given for the Stokes and the Navier–Stokes equations. Finally the method is applied to a double-diffusive convection problem concerning the stability of a fluid stratified by salinity and heated from below.  相似文献   

2.
This paper presents a viscous compressible flow problem to which an equilibrium solution, in terms of density and velocity, can be given implicitly by elementary functions. The corresponding initial boundary value problem is solved by time discretization by the Crank-Nicolson method, Newton linearization and space discretization using multidomain Chebyshev collocation techniques. The physical interval is covered by subintervals of equal length. Each subinterval utilizes the same number of collocation points and each interface consists of one or two points. Six ways of patching are tested. All of them yield solutions with spectral accuracy for a few time steps, but only three are stable in the long run. Details of the density evolution are illustrated.  相似文献   

3.
In this study, matrix representation of the Chebyshev collocation method for partial differential equation has been represented and applied to solve magnetohydrodynamic (MHD) flow equations in a rectangular duct in the presence of transverse external oblique magnetic field. Numerical solution of velocity and induced magnetic field is obtained for steady‐state, fully developed, incompressible flow for a conducting fluid inside the duct. The Chebyshev collocation method is used with a reasonable number of collocations points, which gives accurate numerical solutions of the MHD flow problem. The results for velocity and induced magnetic field are visualized in terms of graphics for values of Hartmann number H≤1000. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A new numerical method called high accuracy time and space transform method (TSTM) is introduced to solve the advection–diffusion equation in an unbounded domain. By a spatial transform, the advection–diffusion equation in the unbounded domain Rn is converted to one on the bounded domain [?1, 1]n, and the Laplace transform is applied to eliminate time dependency. The consequent boundary value problem is solved by collocation on Chebyshev points. To face the well‐known computational challenge represented by the numerical inversion of the Laplace transform, Talbot's method is applied, consisting of numerically integrating the Bromwich integral on a special contour by means of trapezoidal or midpoint rules. Numerical experiments illustrate that TSTM has exponential rate in time and space. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

This paper presents a hybrid spectral/finite volume method for steady-state compressible viscous flows. The method is evaluated for accuracy via test cases for various Mach numbers. The domain is divided into a viscous region and an inviscid region. The viscous region uses the full Navier-Stokes equations, while the inviscid region employs the Euler equations. A high order Chebyshev collocation spectral method is developed for the viscous region to resolve boundary layers. This method avoids the dense grids needed by finite-volume methods to resolve the viscous areas. A low order finite-volume method based on a Lax-Wendroff type scheme is employed for the inviscid region. A special interface formulation is developed for coupling the spectral with the finite-volume method. Comparisons with analytic results as well as convergence histories are presented.  相似文献   

6.
An efficient direct spectral domain decomposition method is developed coupled with Chebyshev spectral approximation for the solution of 2D, unsteady and incompressible Navier-Stokes equations in complex geometries. In this numerical approach, the spatial domains of interest are decomposed into several non-overlapping rectangular sub-domains. In each sub-domain, an improved projection scheme with second-order accuracy is used to deal with the coupling of velocity and pressure, and the Chebyshev collocation spectral method (CSM) is adopted to execute the spatial discretization. The influence matrix technique is employed to enforce the continuities of both variables and their normal derivatives between the adjacent sub-domains. The imposing of the Neumann boundary conditions to the Poisson equations of pressure and intermediate variable will result in the indeterminate solution. A new strategy of assuming the Dirichlet boundary conditions on interface and using the first-order normal derivatives as transmission conditions to keep the continuities of variables is proposed to overcome this trouble. Three test cases are used to verify the accuracy and efficiency, and the detailed comparison between the numerical results and the available solutions is done. The results indicate that the present method is efficiency, stability, and accuracy.  相似文献   

7.
This paper extends a strong-form meshless boundary collocation method, named the singular boundary method (SBM), for the solution of dynamic poroelastic problems in the frequency domain, which is governed by Biot equations in the form of mixed displacement–pressure formulation. The solutions to problems are represented by using the fundamental solutions of the governing equations in the SBM formulations. To isolate the singularities of the fundamental solutions, the SBM uses the concept of the origin intensity factors to allow the source points to be placed on the physical boundary coinciding with collocation points, which avoids the auxiliary boundary issue of the method of fundamental solutions (MFS). Combining with the origin intensity factors of Laplace and plane strain elastostatic problems, this study derives the SBM formulations for poroelastic problems. Five examples for 2D poroelastic problems are examined to demonstrate the efficiency and accuracy of the present method. In particular, we test the SBM to the multiply connected domain problem, the multilayer problem and the poroelastic problem with corner stress singularities, which are all under varied ranges of frequencies.  相似文献   

8.
Abstract

The dynamic behavior of an arc-shaped interfacial crack in an orthotropic functionally graded annular bi-material structure is investigated. In order for the analysis to be executable, the material properties are assumed to vary with the power function of the radial coordinates. By applying the separation variable method, the boundary value problem of the partial differential equation describing the fracture problem of this article can be transformed into a Cauchy kernel singular integral equation with the unknown jump of displacements across the crack surfaces. The obtained integral equation is solved numerically by Lobatto–Chebyshev collocation method to show the effects of the geometric and physical parameters upon the dynamic stress field near the crack tips.

Communicated by Kuang-Hua Chang.  相似文献   

9.
The MHD Falkner–Skan equation arises in the study of laminar boundary layers exhibiting similarity on the semi‐infinite domain. The proposed approach is equipped by the orthogonal Sinc functions that have perfect properties. This method solves the problem on the semi‐infinite domain without truncating it to a finite domain and transforming domain of the problem to a finite domain. In addition, the governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables, and then they are solved numerically by the Sinc‐collocation method. It is shown that the Sinc‐collocation method converges to the solution at an exponential rate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes a nonlinear, three‐dimensional spectral collocation method for the simulation of the incompressible Navier–Stokes equations under the Boussinesq approximation, motivated by geophysical and environmental flows. These flows are driven by the interaction of stratified fluid with topography, which this model accurately accounts for by using a mapped coordinate system. The spectral collocation method is implemented with both a Fourier trigonometric expansion and the Chebyshev polynomials, as appropriate for the domain boundary conditions. The coordinate mapping prohibits the use of existing, fast solution methods that rely on the separation of variables, so a preconditioner based on the approximate solution of a corresponding finite‐difference problem with geometric multigrid is used. The model is parallelized with the Message Passing Interface library, and it runs effectively on shared and distributed‐memory systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A spectral collocation method is developed for solving the three‐dimensional transient Navier–Stokes equations in cylindrical coordinate system. The Chebyshev–Fourier spectral collocation method is used for spatial approximation. A second‐order semi‐implicit scheme with explicit treatment of the pressure and implicit treatment of the viscous term is used for the time discretization. The pressure Poisson equation enforces the incompressibility constraint for the velocity field, and the pressure is solved through the pressure Poisson equation with a Neumann boundary condition. We demonstrate by numerical results that this scheme is stable under the standard Courant–Friedrichs–Lewy (CFL) condition, and is second‐order accurate in time for the velocity, pressure, and divergence. Further, we develop three accurate, stable, and efficient solvers based on this algorithm by selecting different collocation points in r‐, ? ‐, and z‐directions. Additionally, we compare two sets of collocation points used to avoid the axis, and the numerical results indicate that using the Chebyshev Gauss–Radau points in radial direction to avoid the axis is more practical for solving our problem, and its main advantage is to save the CPU time compared with using the Chebyshev Gauss–Lobatto points in radial direction to avoid the axis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Solving numerically hydrodynamical problems of incompressible fluids raises the question of handling first order derivatives (those of pressure) in a closed container and determining its boundary conditions. A way to avoid the first point is to derive a Poisson equation for pressure, although the problem of taking the right boundary conditions still remains. To remove this problem another formulation of the problem has been used consisting of projecting the master equations into the space of divergence‐free velocity fields, so pressure is eliminated from the equations. This technique raises the order of the differential equations and additional boundary conditions may be required. High‐order derivatives are sometimes troublesome, specially in cylindrical coordinates due to the singularity at the origin, so for these problems a low order formulation is very convenient. We research several pressure boundary conditions for the primitive variables formulation of thermoconvective problems. In particular we study the Marangoni instability of an infinite fluid layer and we show that the numerical results with a Chebyshev collocation method are highly correspondent to the exact ones. These ideas have been applied to linear stability analysis of the Bénard–Marangoni (BM) problem in cylindrical geometry and the results obtained have been very accurate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
The Chebyshev matrix collocation method is applied to obtain the spatial modes of the Orr-Sommerfeld equation for Poiseuille flow and the Blasius boundary layer. The problem is linearized by the companion matrix technique. For semi-infinite domains a mapping transformation is used. The method can be easily adapted to problems with boundary conditions requiring different transformations.  相似文献   

14.
A well-known Stokes problem is discussed by a cubic spline collocation method. Two consecutive cubic splines are obtained for the problem. The results by this method are compared with those of an orthogonal collocation method. The selection of the length of the subintervals of the range of the boundary value problem is also justified. The results obtained by these two methods are compared with the analytic solution. The methods involve simple algebra, and hence the calculations do not require the help of a computer. Necessary error analysis has been carried out.  相似文献   

15.
关于Orr—Sommerfeld方程的Chebyshev谱方法的讨论   总被引:3,自引:0,他引:3  
本文讨论了Orr-Sommereld方程的各种Chebyshev谱离散方法,数值证明了Chebyshev配置法离散Orr-Sommerfeld方程没有伪谱,并以此构造了适于任意平面平行速度剖面情形,对时间和时空稳定性模式一致有效的无伪谱的离离散方法,其中,对时空稳定性问题本文给出了一种新的迭代法可以快速有效地求出复频率的鞍点,对平面Poiseuille流,Blasius边界层流和Gauss模型尾迹  相似文献   

16.
求解Helmholtz方程基于核重构思想的最小二乘配点法   总被引:2,自引:0,他引:2  
基于核重构思想构造近似函数,将配点法和最小二乘原理相结合对微分方程进行离散, 建立了Helmholtz方程的最小二乘配点格式,并分别研究了Helmholtz方程的波传播问题和 边界层问题. 通过数值算例可以发现,给出的数值计算结果非常接近于精确解,计算精度明显高于SPH 法的数值结果,且随着节点数目的增加,其精确度越来越高,具有良好的收敛性.  相似文献   

17.
The two-dimensional incompressible Navier-Stokes equations in primitive variables have been solved by a pseudospectral Chebyshev method using a semi-implicit fractional step scheme. The latter has been adapted to the particular features of spectral collocation methods to develop the monodomain algorithm. In particular, pressure and velocity collocated on the same nodes are sought in a polynomial space of the same order; the cascade of scalar elliptic problems arising after the spatial collocation is solved using finite difference preconditioning. With the present procedure spurious pressure modes do not pollute the pressure field. As a natural development of the present work a multidomain extent was devised and tested. The original domain is divided into a union of patching sub-rectangles. Each scalar problem obtained after spatial collocation is solved by iterating by subdomains. For steady problems a C1 solution is recovered at the interfaces upon convergence, ensuring a spectrally accurate solution. A number of test cases have been solved to validate the algorithm in both its single-block and multidomain configurations. The preliminary results achieved indicate that collocation methods in multidomain configurations might become a viable alternative to the spectral element technique for accurate flow prediction.  相似文献   

18.
IntroductionAsymmetricregularizedlongwaveequation (SRLWE) 2 x2 -1 u t = x ρ+ 12 u2 ,  ρ t+ u x=0 (1 )hasbeeninvestigatedinRef.[1 ] .Thesystem (1 )ofequationsisshowntodescribeweaklynonlinearion_acousticwaveandspace_chargewaves.Thehuperbolicsecantsquaredsolitarywaves ,thefourconservationlaws,andsomenumericalresultshavebeenobtainedinRef.[1 ] .Obviously ,eliminatingρin (1 ) ,weobtainaclassofregularizedlongwaveequationutt-uxx+ 12 u2xt-uxxtt =0 . (2 )TheSRLWequationisexplicitlysymmetric…  相似文献   

19.
This paper investigates the performance of a novel global collocation method for the eigenvalue analysis of freely vibrated elastic structures when either basis or shape functions are used to approximate the displacement field. Although the methodology is generally applicable, numerical results are presented only for rods in which one-dimensional basis functions in the form of a power series, as well as equivalent Lagrange, Bernstein or Chebyshev polynomials are used. The new feature of the proposed methodology is that it can deal with any type of boundary conditions; therefore, the cases of two Dirichlet as well as one Dirichlet and one Neumann condition were successfully treated. The basic finding of this work is that all these polynomials lead to results identical to those obtained by the power series expansion; therefore, the solution depends on the position of the collocation points only.  相似文献   

20.
This paper presents a new method for solving a nonlinear exterior boundary value problem arising in two-dimensional elasto-plasticity. The procedure is based on the introduction of a sufficiently large circle that divides the exterior domain into a bounded region and an unbounded one. This allows us to consider the Dirichlet-Neumann mapping on the circle, which provides an explicit formula for the stress in terms of the displacement by using an appropriate infinite Fourier series. In this way we can reduce the original problem to an equivalent nonlinear boundary value problem on the bounded domain with a natural boundary condition on the circle. Hence, the resulting weak formulation includes boundary and field terms, which yields the so called boundary-field equation method. Next, we employ the finite Fourier series to obtain a sequence of approximating nonlinear problems from which the actual Galerkin schemes are derived. Finally, we apply some tools from monotone operators to prove existence, uniqueness and approximation results, including Cea type error estimates for the corresponding discrete solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号