首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
环境水动力学中, 湖库底泥中污染物释放是人们研究的主要问题之一. 在水动力学条件作用下, 污染底泥再悬浮使大量污染物被重新释放出来, 造成水体的二次污染. 本文基于水槽实验研究提供的大量实测数据, 建立上覆水体-底泥-污染物的耦合力学模型. 在上覆水体不同流速条件下, 数值模拟底泥起动再悬浮过程以及污染物释放过程. 分析流场特性和污染物浓度之间的关系, 得到速度、颗粒体积分数、污染物浓度、湍动能以及时间等参数之间的定量关系. 研究表明, 底泥再悬浮污染物释放过程, 是由上覆水体-底泥-污染物构成的耦合过程. 迅速进入上覆水体的底泥颗粒, 影响了上覆水体流动特性, 进而影响到污染物的释放. 对于非吸附性污染物, 底泥起动后复杂的流场特性是底泥再悬浮污染物释放的主要影响因素. 当流场特性(如雷诺数)改变时, 对流和湍流扩散作用在污染物输运过程贡献不同. 建立上覆水体-底泥-污染物的耦合模型, 研究水动力学条件与底泥污染物释放规律的定量化关系, 可为构建湖库区域水污染模型提供支撑.   相似文献   

2.
Pollutants release is highly consistent with suspended sediment concentration (SSC) in water column, especially during re-suspension and transport events. The present research focuses on pollutant dynamic release from re-suspended sediment, especially the vertical distribution relationship between them. The sediment erosion experiments on a series of uniform flow are conducted in a circulate flume. Reactive tracer (phosphorus) is used as the contaminant in fine-grained sediments to identify the release characteristic length and time. Experimental results show that the flow condition near-bed depends on the sediment surface roughness. The region with high turbulent intensities corresponds to a high concentration sediment layer. In addition, the SSC decreases with the distance, water depth, and particle grain size. The sediment in a smaller grain size takes much more time to reach equilibrium concentration. Total phosphorus (TP) concentration changes along the water depth as SSC in the initial re-suspension stage, appearing in two obvious concentration regimes: the upper low-concentration layer and the high-concentration near-bottom layer. This layered phenomenon remains for about 3 hours until SSC distri- bution tends to be uniform. Longitudinal desorption plays an important role in long-way transport to reduce the amount of suspended sediment in water column.  相似文献   

3.
An oscillating grid chamber has been developed to study sediment suspension, desorption of compounds from the resuspended sediment, and air–water mass transfer. The chamber is designed to allow researchers to study desorption of contaminants from cohesive sediments and the flux of those contaminants to the vapor phase. The chamber uses a single vertically oscillating grid driven by a DC motor and closed-loop controller. Sediment to be studied is placed in the bottom of the chamber and entrained into the water column by the turbulence generated by the oscillating grid. A two-component laser Doppler velocimeter (LDV) was used to measure the turbulent velocity field inside the chamber. Detailed mapping of the turbulent kinetic energy (TKE) produced by this grid arrangement was compared with established grid-stirred systems. At distances closer to the grid than two grid bar spacings, large lateral gradients exist in the TKE. The suspension of cohesive sediments was also studied using this chamber. Steady-state suspended sediment concentrations were achieved within 30 min for a variety of turbulence levels. By adjusting the grid operating parameters, the TKE can be set to simulate the turbulence found either at the bed or free surface in open-channel flow systems. With some care, the oscillating grid chamber can be used as a simple laboratory analogue to study various environmental processes within the flow or at either the sediment–water or air–water interface.  相似文献   

4.
An experimental study was carried out to investigate the resuspension of heavy particles of a sediment bed by axi-symmetric turbulent jets issuing from below. The case of point jets and loosely-held monodispersed particles was considered, in particular, the cases of a single jet and an array of jets located in the intersection points of a square grid. The aim was to map the flow field and the nature of sediment distribution as a function of governing parameters and to parameterize salient observables such as the maximum height of rise of sediments. The results were extrapolated to study sediment resuspension in karstic lakes, especially lake Banyoles located in Catalonia, northeastern Spain.  相似文献   

5.
The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, “turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces. The project supported by the National Natural Science Foundation of China (Grant No.19672070)  相似文献   

6.
含水合物粉质黏土压裂成缝特征实验研究   总被引:5,自引:2,他引:3  
水力压裂技术是一种重要的油气井增产、增注措施,已经广泛应用于页岩油气等非常规资源的商业开采中.目前对于粉质黏土水合物沉积物的水力压裂成缝能力尚不清楚.本文采用南海水合物沉积层的粉质黏土制备沉积物试样,并与实验室配制的粉细砂土沉积物对比,分析粉质黏土沉积物的水力成缝能力及主控因素.实验结果表明含水合物和冰的沉积物破裂压力较高,这与粉质黏土沉积物特殊的应力-应变特征和渗透性有关.当沉积物应变高于6%时, 试样强度迅速上升, 呈现应变强化的特征,对水力拉伸裂缝的扩展具有一定的阻碍作用. 粉质黏土沉积物粒径细小, 渗透性差,难以通过渗透作用传递压力, 提高了沉积层的破裂压力. 此外,粉质黏土水合物沉积层裂缝扩展存在明显延迟效应,说明裂缝扩展受到流体压力和热应力的共同影响. 适当延长注入时间,保持流体与沉积层充分接触, 会起到分解水合物、降低破裂压力的作用.该研究成果有利于深入理解水力裂缝在水合物沉积层中的扩展规律,对探索压裂技术在水合物沉积层开发中的应用具有重要意义.   相似文献   

7.
Several data sets were introduced to investigate the possible effects of climate-change-related variation of wind on aerosol concentration during winter in Shanghai, China. These data sets included the daily wind speed, wind direction, visibility, and precipitation from 1956 to 2010, hourly PM10 concentration from 2008 to 2010, and the NCEP/NCAR reanalysis data of global atmospheric circulation from 1956 to 2010. The trend of aerosol concentration and its correlations with wind speed and wind direction in winter were analyzed. Results indicated that there was an increase in the number of haze days in winter of 2.1 days/decade. Aerosol concentration, represented by PM10 in this study, was highly correlated to both wind speed and direction in winter. The PM10 concentration increased as wind speed decreased, reaching maximum values under static wind conditions. The PM10 concentration was relatively lower under easterly winds and higher under westerly winds. The analysis showed that weaker East Asia winter monsoons have resulted in a reduction of wind speed, increase in static wind frequency, and decline in the frequency of northerly winds since the 1980s. Moreover, the rapid expansion of urban construction in Shanghai has changed the underlying surface considerably, which has led to a reduction in wind speed. Finally, a wind factor was defined to estimate the combined effects of wind speed and wind direction on aerosol concentrations in Shanghai. The analysis of this factor indicated that changes in atmosphere circulation and urbanization have had important effects on the number of winter haze days in Shanghai.  相似文献   

8.
定床弯道内水沙两相运动的数值模拟   总被引:1,自引:0,他引:1  
刘诚  沈永明 《力学学报》2009,41(3):318-328
在适体同位网格中采用非正交曲线坐标系下的三维k-ε-kp固液两相双流体湍流模型研究弯道内水流和悬浮泥沙运动,主要计算了试验室S型水槽内清水流动的三维流场、120°弯道内水沙两相流动中底沙与底流的运动轨迹以及S型水槽内水沙两相流动的两相流场和泥沙浓度场. 对于S型水槽内清水流动,数值结果与试验结果吻合良好. 120°弯道内水沙两相流动中固液两相的运动轨迹在弯道直线段基本重合,在弯道内泥沙轨迹逐步偏离水体轨迹,其偏离程度随泥沙粒径增大而增大. 从S型水槽内水沙两相流动计算结果中发现泥沙纵向流速在壁面附近比水流纵向速度大,在远离壁面区域比水流纵向速度小;弯道内泥沙横向流速比水流横向流速小;垂向流速在直线段和泥沙沉速相当,在弯道内受螺旋水流影响而变化;两相流速差别随泥沙粒径增大而变大;泥沙浓度呈现下浓上稀的分布,在弯道内横向断面上呈现凸岸大凹岸小的分布,泥沙浓度随泥沙粒径增大而减小.   相似文献   

9.
The aim of this paper is to analyze delaminated multilayered plates under classical loads using an alternative model to the existing three-dimensional finite element methods (3D-FEM). The proposed alternative model, named LS1, is a layerwise stress model proving significantly less computationally expensive while accurate and efficient. In particular this paper uses experimental data from different simple test specimens in a finite element code, which is based on LS1, in order to calculate strain energy release rates (SERR) in different modes of delamination. The focus is on two types of delaminated interfaces 0°/0° and 0°/45°. The obtained SERR results are in very good agreement with the experimental values and, in the case of mixed-mode delamination, they are as accurate as the SERR obtained by 3D-FE models. The other interesting property of the LS1 model is the very fast calculation speed as the SERR can be analytically deduced from interfacial stresses. This relation which only depends on the stacking sequence and the position of delamination is presented.  相似文献   

10.
Air-cooled steam condensers (ACSCs) have been extensively utilized to reject waste heat in power industry to save water resources. However, ACSC performance is so sensitive to ambient wind that almost all the air-cooled power plants in China are less efficient compared to design conditions. It is shown from previous research that the influence of ambient wind on the cell performance differs from its location in the condenser. As a result, a numerical model including two identical ACSC cells are established, and the different influence on the performance of the cells is demonstrated and analyzed through the computational fluid dynamics method. Despite the great influence from the wind speeds, similar cell performance is obtained for the two cells under both windless and wind speed conditions when the wind parallels to the steam duct. Fan volumetric effectiveness which characterizes the fan performance, as well as the exchanger heat transfer rate, drops obviously with the increasing wind speed, and performance difference between the exchanger pair in the same A-frame also rises continuously. Furthermore, different flow and heat transfer characteristics of the windward and leeward cell are obtained at different wind angles, and ambient wind enhances the performance of the leeward cell, while that of the windward one changes little.  相似文献   

11.
The aim of this work is to develop a well‐balanced finite‐volume method for the accurate numerical solution of the equations governing suspended sediment and bed load transport in two‐dimensional shallow‐water flows. The modelling system consists of three coupled model components: (i) the shallow‐water equations for the hydrodynamical model; (ii) a transport equation for the dispersion of suspended sediments; and (iii) an Exner equation for the morphodynamics. These coupled models form a hyperbolic system of conservation laws with source terms. The proposed finite‐volume method consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The gradient fluxes are discretized using a modified Roe's scheme using the sign of the Jacobian matrix in the coupled system. A well‐balanced discretization is used for the treatment of source terms. In this paper, we also employ an adaptive procedure in the finite‐volume method by monitoring the concentration of suspended sediments in the computational domain during its transport process. The method uses unstructured meshes and incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep sediment concentrations and bed load gradients that may form in the approximate solutions. Details are given on the implementation of the method, and numerical results are presented for two idealized test cases, which demonstrate the accuracy and robustness of the method and its applicability in predicting dam‐break flows over erodible sediment beds. The method is also applied to a sediment transport problem in the Nador lagoon.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The resuspension of graphite dust is an important phenomenon in the release of radioactivity and the safety of nuclear reactors during severe accidents. In this study, a visualization experimental platform is constructed to study effects of particle size, flow velocity, and wall roughness on the resuspension characteristics of graphite particles. A statistical model of particle resuspension applicable to monolayer dispersed particles is developed based on the moment equilibrium of the particles and the flow field characteristics, as calculated by the large-eddy simulation framework. The results show that particle resuspension can be divided into short- and long-term resuspension stages. Most particle resuspension occurs during the short-term stage. With increases in flow velocity and particle diameter, the aerodynamic or adhesion force acting on the particles increases, and corresponding particle resuspension fraction increases. The influence of rough walls on particle resuspension is related to both the force on the particles and the arm ratio between the wall morphology and the particle diameter. A comparison with the experimental results demonstrates that the particle resuspension model developed in this study accurately predicts the impact of flow velocity, particle size, and wall roughness on particle resuspension.  相似文献   

13.
基于计算流体动力学软件Fluent17.2,以浙江温州大学某栋带女儿墙的多层试验教学楼为研究对象,采用RNG k-ε湍流模型对其进行数值模拟。通过对不同风向角下的数值模拟结果进行对比分析,探究屋顶风场与未受扰来流风场的区别,屋顶不同高度风场的差异,以及不同风向角来流情况下近屋面风场的分布特点、变化规律。结果表明:在离屋面高8m以下,屋顶风速变化剧烈混乱,屋面前沿、中部、后方区域的风速会随高度增加发生变化,并与未受扰来流风场相比存在较大差别;在女儿墙高度1.2m以下,屋面四周区域风速小于中部区域;在离屋面高1.2m~8m时,同一高度屋面前沿区域风速却要大于中部区域及后方区域;在不同的风向角来流下,当来流与建筑迎风面垂直时,屋顶风场沿中线对称分布。本文所得结论可为屋顶各类设备的抗风设计提供一定的参考依据。  相似文献   

14.
This paper describes a novel technique for obtaining accurate, high (spatial) resolution measurements of sediment redeposition levels. A sequence of different random patterns are projected onto a sediment layer and captured using a high-resolution camera, producing a set of reference images. The same patterns are used to obtain a corresponding sequence of deformed images after a region of the sediment layer has been displaced and redeposited, allowing the use of a high-accuracy pattern matching algorithm to quantify the distribution of the redeposited sediment. A set of experiments using the impact of a vortex ring with a glass ballotini particle layer as the resuspension mechanism are described to test and illustrate the technique. The accuracy of the procedure is assessed using a known crater profile, manufactured to simulate the features of the craters observed in the experiments.
R. J. MunroEmail:
  相似文献   

15.
Vertical profiles of suspended sediment concentration have been gathered in a laboratory flume using a 2.25 MHz acoustic transducer. The acoustic concentration profiler (ACP) was calibrated in a vertical duct for homogeneous concentrations of two uniformly sized sediments. The transducer was then transferred to a 6 m horizontal flume where concentration profiles were measured in steady and unsteady flows. For the steady flow tests, concentration measurements made with the ACP and with suction samplers are compared. The results demonstrate that the ACP provides an accurate method of non-intrusively measuring sediment concentrations of more than 2.5% by volume. Received: 24 September 1998/Accepted: 12 April 1999  相似文献   

16.
In order to study the diffusion, migration, and distribution of pollutants among overlying water-body and porous seabed under wave conditions, a dynamic coupling numerical model is proposed. In this model, the coupling between wave field of overlying water-body and seepage of porous bed, the capture and release of pollutants in porous media, and the transport process between the two different regions are taken into account. We use the unified equations for pressure correction and pollutant concentration to solve the numerical model, which avoids repeated iteration on the interface boundary. The model is verified by several case studies. Afterwards, the processes involving release of pollutant from porous seabed and transportation to overlying water-body under different wave conditions are investigated. The results show that the water depth, wave height,and wave period have great influences on the release, capture, and transport processes for phosphorus pollutant.  相似文献   

17.

Fault ride-through (FRT) is a control model enhanced to protect doubly fed induction generator (DFIG) during voltage dip occurring in grid. In this study, stator and rotor circuit dynamic modeling enhanced in terms of simulation performance and fast system responses during instability in DFIG-based wind farm, besides, a FRT capability strategy were enhanced for nonlinear supercapacitor modeling in DFIG-based wind farm. The transient stability analyses of the DFIG with and without supercapacitor as well as positive–negative-sequence dynamic modeling (PNSDM) were compared for three phases, two phases, two-phase-ground and a-phase-ground faults. Furthermore, variations such as DFIG output voltage, DFIG angular speed, DFIG electrical torque and DFIG dq axis stator current variations were also evaluated. It was found that the DFIG-based wind farm became stable within a short time using the PNSDM and supercapacitor.

  相似文献   

18.
利用古堰塞湖沉积物中连续的地质记录来研究区域过去气候变化规律,这一方法是继通过深海沉积、极地与高山冰芯、黄土、湖泊、洞穴石笋、珊瑚等沉积物中的地质记录来研究全球气候变化途径之后的又一新途径。反映沉积物中环境信息的代用指标有多种,其中粒度特征就是其中一种,它可以反映沉积过程中的古环境、古气候特征。通过该项研究可以建立青藏高原东部边缘(岷江上游叠溪地区)2万年以来的古环境古气候演化规律以及地质环境的演化规律,找到气候环境变化与地质环境演化的相关性。本文采用精细粒度分析和系统粒度分析等方法提取了堰塞湖相沉积物的粒度特征资料,并与已有的冰川湖沉积物的研究成果进行了对比分析。通过精细分析得到了堰塞湖相沉积物多为粉土和黏土; 深色沉积物与粗颗粒相对应,浅色沉积物与细颗粒相对应的关系; 并结合有机质测试发现:深色沉积物有机质含量多于浅色沉积物,表明粗颗粒土代表的是雨水充沛水动力条件好且植被相对茂盛的气候环境特征,细颗粒土则与其相反; 沉积物中深浅交替的纹层厚度约为2~5cm; 这些特征与冰川湖沉积物特征差别很大,因此其代表的气候环境意义也完全不同。通过整个剖面的系统粒度分析得到了整个沉积过程的粒度变化特征,并据此结合年代测试结果将整个沉积剖面划分了7个粒度变化周期,揭示了该沉积过程中该地区经历了7次气候环境的变迁。  相似文献   

19.
A well‐balanced total variation diminishing–McCormack scheme is used to simulate the fast evolving flow on a mobile coarse sediments bed. The scheme is chosen because of its shock capturing capabilities and its relative simplicity, which allow different sediment transport formulae to be slotted in easily. A typical example of the kind of flows treated here is bore‐driven wave run‐up. The analogy with a dam‐break on a mobile bed is used here to analyze the performance of the model. The model solves the nonlinear shallow water equations coupled with the Exner sediment balance equation for the mobile bed. Quasi‐analytical solutions to this problem for different expressions for instantaneous sediment discharge formulae are used to test the performance of the scheme. Together with the existing solution for the Grass formula, a further solution is obtained for a different formula. Numerical tests were also carried out for a further formula that is an industry standard. The agreement of the results with the solutions is very good and consistent results were obtained for all the formulae tested. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Optical distortions have previously prevented non-intrusive measurements of dissolved oxygen concentration profiles by Laser induced fluorescence (LIF) to within 200 μm of the air–water interface. It is shown that by careful experimental design, reliable measurements can be obtained within 28 μm of moving air–water interfaces. Consideration of previously unidentified optical distortions in LIF imagery due to non-linear effects is presented that is critical for robust LIF data processing and experimental design. Phase resolved gas flux measurements have now been accomplished along wind forced microscale waves and indicate that the highest mean gas fluxes are located in the wave troughs. The local mean oxygen fluxes as determined by LIF techniques can be reconciled to within 40% of those obtained by bulk measurement in the water. These data provide a new perspective on wind-wave enhancement of low solubility gas transfer across the air–water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号