首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper, we present a new Galerkin finite element method with bubble function for the compressible Euler equations. This method is derived from the scaled bubble element for the advection-diffusion problems developed by Simo and his colleagues, which is based on the equivalence between the Galerkin method employing piecewise linear interpolation with bubble functions and the Streamline-Upwind/Petrov Galerkin (SUPG) finite element method using P1 approximation in the steady advection-diffusion problem. Simo and this author have applied this approach to transient advection-diffusion problems by using a special scaled bubble function called P-scaled bubble, which is designed to work in the transient advection-diffusion problems for any Peclet number from 0 to ∞. The method presented in this paper is an application of this p-scaled bubble element to a pure hyperbolic system.  相似文献   

2.
Two‐level low‐order finite element approximations are considered for the inhomogeneous Stokes equations. The elements introduced are attractive because of their simplicity and computational efficiency. In this paper, the stability of a Q1(h)–Q1(2h) approximation is analysed for general geometries. Using the macroelement technique, we prove the stability condition for both two‐ and three‐dimensional problems. As a result, optimal rates of convergence are found for the velocity and pressure approximations. Numerical results for three test problems are presented. We observe that for the computed examples, the accuracy of the two‐level bilinear approximation is compared favourably with some standard finite elements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered.This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h = O(H 2),which can still maintain the asymptotically optimal accuracy.It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution,which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h.Hence,the two-level stabilized finite element method can save a large amount of computational time.Moreover,numerical tests confirm the theoretical results of the present method.  相似文献   

4.
This paper describes the use of an a posteriori error estimator to control anisotropic mesh adaptation for computing inviscid compressible flows. The a posteriori error estimator and the coupling strategy with an anisotropic remesher are first introduced. The mesh adaptation is controlled by a single‐parameter tolerance (TOL) in regions where the solution is regular, whereas a condition on the minimal element size hmin is enforced across solution discontinuities. This hmin condition is justified on the basis of an asymptotic analysis. The efficiency of the approach is tested with a supersonic flow over an aircraft. The evolution of a mesh adaptation/flow solution loop is shown, together with the influence of the parameters TOL and hmin. We verify numerically that the effect of varying hmin is concordant with the conclusions of the asymptotic analysis, giving hints on the selection of hmin with respect to TOL. Finally, we check that the results obtained with the a posteriori error estimator are at least as accurate as those obtained with anisotropic a priori error estimators. All the results presented can be obtained using a standard desktop computer, showing the efficiency of these adaptative methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Using a non‐conforming C0‐interior penalty method and the Galerkin least‐square approach, we develop a continuous–discontinuous Galerkin finite element method for discretizing fourth‐order incompressible flow problems. The formulation is weakly coercive for spaces that fail to satisfy the inf‐sup condition and consider discontinuous basis functions for the pressure field. We consider the results of a stability analysis through a lemma which indicates that there exists an optimal or quasi‐optimal least‐square stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, and on the geometry of the finite element in the mesh. We provide several numerical experiments illustrating such dependence, as well as the robustness of the method to deal with arbitrary basis functions for velocity and pressure, and the ability to stabilize large pressure gradients. We believe the results provided in this paper contribute for establishing a paradigm for future studies of the parameter of the Galerkin least square method for second‐gradient theory of incompressible flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We present a new interpretation of the fingering phenomena of the thin liquid film layer through numerical investigations. The governing partial differential equation is ht + (h2?h3)x = ??·(h3h), which arises in the context of thin liquid films driven by a thermal gradient with a counteracting gravitational force, where h = h(x, y, t) is the liquid film height. A robust and accurate finite difference method is developed for the thin liquid film equation. For the advection part (h2?h3)x, we use an implicit essentially non‐oscillatory (ENO)‐type scheme and get a good stability property. For the diffusion part ??·(h3h), we use an implicit Euler's method. The resulting nonlinear discrete system is solved by an efficient nonlinear multigrid method. Numerical experiments indicate that higher the film thickness, the faster the film front evolves. The concave front has higher film thickness than the convex front. Therefore, the concave front has higher speed than the convex front and this leads to the fingering phenomena. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This work focuses upon the development of a wavelet-based variant of the variational multiscale method (VMS) for accurate and efficient large eddy simulation (LES) called wavelet-based VMS-LES (WMS-LES). This approach has been incorporated within the framework of a high-order incompressible flow solver based upon the pressure-stabilized discontinuous Galerkin finite element method (DG-FEM). The VMS approach is designed to produce an a priori scale separation of the governing equations, in a manner which makes no assumptions on either the boundary conditions or the mesh uniformity. Using second-generation wavelets (SGWs) elementwise for scale separation ensures, on one hand, the preservation of the computational compactness of the DG-FEM scheme and, on the other hand, the ability to achieve scale separation in wavenumber space. The optimal space-frequency localization property of the SGW provides an improvement over the commonly used Legendre polynomials. The suitability of the elementwise SGW scale-separation operation as a tool for error indication has been demonstrated in an h-adaptive computation of the reentrant corner test case. Finally, the DG-FEM solver and the WMS-LES method have been assessed through simulations upon the three-dimensional Taylor-Green vortex test case. Our results indicate that the WMS-LES approach exhibits a distinct improvement over the monolevel LES approach. This effect is not produced by a change in the magnitude of the subgrid dissipation but rather by the redistribution of the subgrid dissipation in wavenumber space.  相似文献   

8.
We investigate a special technique called ‘pressure separation algorithm’ (PSepA) (see Applied Mathematics and Computation 2005; 165 :275–290 for an introduction) that is able to significantly improve the accuracy of incompressible flow simulations for problems with large pressure gradients. In our numerical studies with the computational fluid dynamics package FEATFLOW ( www.featflow.de ), we mainly focus on low‐order Stokes elements with nonconforming finite element approximations for the velocity and piecewise constant pressure functions. However, preliminary numerical tests show that this advantageous behavior can also be obtained for higher‐order discretizations, for instance, with Q2/P1 finite elements. We analyze the application of this simple, but very efficient, algorithm to several stationary and nonstationary benchmark configurations in 2D and 3D (driven cavity and flow around obstacles), and we also demonstrate its effect to spurious velocities in multiphase flow simulations (‘static bubble’ configuration) if combined with edge‐oriented, resp., interior penalty finite element method stabilization techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this article we discuss the reduced basis method (RBM) for optimal control of unsteady viscous flows. RBM is a reduction method in which one can achieve the versatility of the finite element method or another for that matter and gain significant reduction in the number of degrees of freedom. The essential idea in this method is to define a reduced order subspace spanned by few basis elements and then obtain the solution via a Galerkin projection. We present several ways to define this subspace. Feasibility of the approach is demonstrated on two boundary control problems in cavity and wall bounded channel flows. Control action is effected through boundary surface movement on part of the solid wall. Application of RBM to the control problems leads to finite dimensional optimal control problems which are solved using Newton's method. Through computational experiments we demonstrate the feasibility and applicability of the reduced basis method for control of unsteady viscous flows.  相似文献   

10.
This paper investigates the three-dimensional (3D) scattering of guided waves by a through-thickness cavity with irregular shape in an isotropic plate. The scattered field is decomposed on the basis of Lamb and SH waves (propagating and non-propagating), and the amplitude of the modes is calculated by writing the nullity of the total stress at the boundary of the cavity. In the boundary conditions, the functions depend on the through-thickness coordinate, z, but contrary to the case where the cavity has a circular shape, they also depend on the angular coordinate θ. This is dealt with by projecting the z-dependent functions onto a basis of orthogonal functions, and by expanding the θ-dependent functions in Fourier series. Examples include the scattering of the S0, SH0 and A0 modes by elliptical cavities with different values of aspect ratio, and the scattering of the S0 mode by a cavity with an arbitrary shape. Results obtained with this model are compared with results obtained with the finite element (FE) method, showing very good agreement.  相似文献   

11.
A three‐dimensional finite element method for incompressible multiphase flows with capillary interfaces is developed based on a (formally) second‐order projection scheme. The discretization is on a fixed (Eulerian) reference grid with an edge‐based local h‐refinement in the neighbourhood of the interfaces. The fluid phases are identified and advected using the level‐set function. The reference grid is then temporarily reconnected around the interface to maintain optimal interpolations accounting for the singularities of the primary variables. Using a time splitting procedure, the convection substep is integrated with an explicit scheme. The remaining generalized Stokes problem is solved by means of a pressure‐stabilized projection. This method is simple and efficient, as demonstrated by a wide range of difficult free‐surface validation problems, considered in the paper. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The standard least-squares finite element method for the linearized Euler equations turns out to be inaccurate. This method is studied in detail for a system of composite type, obtained by transformation of the linearized Euler equations. The shortcomings of the method are clarified and an embedding method is constructed. It is shown numerically that this new method is O(h2)-accurate.  相似文献   

13.
In this paper we address the problem of the implementation of boundary conditions for the derived pressure Poisson equation of incompressible flow. It is shown that the direct Galerkin finite element formulation of the pressure Poisson equation automatically satisfies the inhomogeneous Neumann boundary conditions, thus avoiding the difficulty in specifying boundary conditions for pressure. This ensures that only physically meaningful pressure boundary conditions consistent with the Navier-Stokes equations are imposed. Since second derivatives appear in this formulation, the conforming finite element method requires C1 continuity. However, for many problems of practical interest (i.e. high Reynolds numbers) the second derivatives need not be included, thus allowing the use of more conventional C0 elements. Numerical results using this approach for a wall-driven contained flow within a square cavity verify the validity of the approach. Although the results were obtained for a two-dimensional problem using the p-version of the finite element method, the approach presented here is general and remains valid for the conventional h-version as well as three-dimensional problems.  相似文献   

14.
We describe some Hermite stream function and velocity finite elements and a divergence‐free finite element method for the computation of incompressible flow. Divergence‐free velocity bases defined on (but not limited to) rectangles are presented, which produce pointwise divergence‐free flow fields (∇· u h≡0). The discrete velocity satisfies a flow equation that does not involve pressure. The pressure can be recovered as a function of the velocity if needed. The method is formulated in primitive variables and applied to the stationary lid‐driven cavity and backward‐facing step test problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Based on[1 ],we have further applied the variational princi-ple of the variable boundary to investigate the discretizationanalysis of the solid system and derived the generalized Ga-lerkin’s equations of the finite element.the boundary varia-tional equations and the boundary integral equations.These e-quations indicate that the unknown functions of the solid sys-tem must satisfy the conditions in the element S_a or on the boun-dariesГ_a.These equations are applied to establishing the discreti-zation equations in order to obtain the numerical solution ofthe unknown functions.At a time these equations can be usedas the basis for the simplified calculation in various corres-ponding cases.In this paper,the results of boundary integral equationsshow that the calculation of integration is not accurate alongthe surfaceГ_a of interior element S_a by J-integral suggestedby Rice[2].  相似文献   

16.
The paper is concerned with stability and accuracy of an nth order Lagrangian family of finite element steady-state solutions of the diffusion-convection equation, and furthermore is concerned with the stability and the accuracy of on mth kind Hermitian family of finite element solutions. We discuss the stability of the numerical solution based on the fact that the characteristic finite element solution can be expressed approximately as a rational function of cell Peclet number Pec ( = uh/k). Moreover, it is shown that by eliminating derivatives and by using the interpolation method over elements a stable solution is obtained over the domain independent of Pec for P1,3, and for P2,5 the stable solution is obtained for Pec less than 44.4.  相似文献   

17.
18.
A space–time finite element method for the incompressible Navier–Stokes equations in a bounded domain in ?d (with d=2 or 3) is presented. The method is based on the time‐discontinuous Galerkin method with the use of simplex‐type meshes together with the requirement that the space–time finite element discretization for the velocity and the pressure satisfy the inf–sup stability condition of Brezzi and Babu?ka. The finite element discretization for the pressure consists of piecewise linear functions, while piecewise linear functions enriched with a bubble function are used for the velocity. The stability proof and numerical results for some two‐dimensional problems are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper we study the stability and approximability of the ??1–??0 element (continuous piecewise linear for the velocity and piecewise constant for the pressure on triangles) for Stokes equations. Although this element is unstable for all meshes, it provides optimal approximations for the velocity and the pressure in many cases. We establish a relation between the stabilities of the ??1–??0 element (bilinear/constant on quadrilaterals) and the ??1–??0 element. We apply many stability results on the ??1–??0 element to the analysis of the ??1–??0 element. We prove that the element has the optimal order of approximations for the velocity and the pressure on a variety of mesh families. As a byproduct, we also obtain a basis of divergence‐free piecewise linear functions on a mesh family on squares. Numerical tests are provided to support the theory and to show the efficiency of the newly discovered, truly divergence‐free, ??1 finite element spaces in computation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A fully discrete postprocessing mixed finite element scheme is considered for solving the time-dependent Navier–Stokes equations. In the PP method, we only consider a non-linear equation in the coarse-level subspace and a linear problem in the fine-level subspace. The analysis shows that the PP scheme can reach the same accuracy as the standard Galerkin method with a very fine mesh size h by an appropriate choice of H. Numerical examples are provided that confirm both the theoretical analysis and the corresponding improvement in computational efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号