首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
赵玉萍  王世鸣 《应用力学学报》2020,(1):321-329,I0022,I0023
以单纤维十字型横向拉伸试验为研究对象,对纤维/基体界面采用弹性-软化双线性内聚力模型,建立了纤维复合材料在横向拉伸作用下界面法向失效过程的解析模型。得到了沿纤维/基体圆周界面的法向应力分布,纤维/基体界面的状态与界面承载力和单纤维复合材料承载力的关系,以及内聚力参数和试件几何尺寸对它们的影响。结果表明:纤维/基体圆周界面在脱粘前经历全部弹性及弹性+软化两种状态;当界面为弹性状态时,界面法向应力随界面强度线性增加;当界面为弹性+软化状态时,界面软化范围随界面裂纹萌生位移的增加而增大;界面初始脱粘位置与拉伸荷载方向重合;界面初始脱粘时的界面承载力随界面强度及界面裂纹萌生位移的增加而增加,随界面裂纹生成位移的增加而降低;单纤维复合材料的脱粘荷载受基体截面尺寸的影响,当纤维体积含量相同时,沿荷载方向截面尺寸的增大对提高脱粘荷载更显著。  相似文献   

2.
纤维增强复合材料界面的力学行为   总被引:7,自引:1,他引:7  
洗杏娟 《力学进展》1992,22(4):464-478
研究材料的界面和表面的力学行为与破坏机理,是当代材料科学、力学、物理学的前沿课题之一,而复合材料界面问题更有其自身的特殊性和复杂性。本文结合笔者的研究工作重点讨论了纤维复合材料界面力学的共性问题,阐述了复合材料界面的性质、复合材料界面的力学模型和理论、界面力学表征的实验研究、界面损伤破坏机理、界面对复合材料力学性能的影响等5个方面。  相似文献   

3.
基于Gurtin-Murdoch表/界面理论和广义自洽方法,获得了考虑界面应力时纳米涂层纤维增强复合材料有效反平面剪切模量的闭合形式解。讨论了涂层的壁厚、力学性能和界面性能对复合材料有效性能的影响。结果显示:在纳米尺度范围内,复合材料的有效反平面剪切模量受纳米涂层的尺寸影响显著。纤维体积分数一定时,涂层壁厚越大,纤维半径越小,有效反平面剪切模量与经典结果偏差越大。纤维刚度和涂层界面性能对复合材料有效模量的影响也取决于涂层刚度,非常软或非常硬的涂层都大大限制了纤维刚度对复合材料有效模量的贡献,过高的涂层刚度屏蔽了纳米复合材料表/界面效应的影响。  相似文献   

4.
压入实验界面端奇异性研究   总被引:1,自引:0,他引:1  
纤维压入实验是复合材料界面剪切强度细观实验方法之一,其试件通常由复合材料中切割下来制备而成,从中选取单根纤维,进行压入试验,所以被选中的纤维可看成是被纤维和纯基本材料构成的横观各向同性复合材料所包裹。本文以此为依据,建立了横观各向同性复合材料基体包裹各向同性纤维的轴对称模型,采用逐次渐近等求解方法,得到了求解该模型界面端应力奇异性指数的特征方程,并计算了碳纤维/环氧树脂、碳纤维/铝和碳纤维/Al2O3压入试件界面端奇异性随碳纤维体积百分含量的变化情况。  相似文献   

5.
轴对称圆柱界面裂纹的应力奇异性   总被引:6,自引:3,他引:6  
复合材料中,纤维与基体的界面脱粘是复合材料细观损伤的基本形式之一。复合材料界面粘结强度对复合材料的宏观力学性能有重要的影响。复合材料界面断裂韧性的定义与测试要求对圆柱界面裂纹尖端应力场的奇异性有充分的了解。本文对轴对称圆柱界面裂纹的应力奇异性采用逐步近法作了近似的分析,文中对获得的所似结果作了较深入的讨论。  相似文献   

6.
考虑界面行为的SMA纤维复合材料模型   总被引:1,自引:0,他引:1  
构造了一个考虑部分界面开脱情况下SMA长纤维复合材料的双圆柱模型.在理想界面区域SMA纤维所受的轴力恒定,而在开脱区域则考虑为受线性变化轴力.计算结果表明,开脱区长度及临界界面剪应力只对SMA纤维的相变区有很明显的影响,而对母相及马氏体相的弹性变形区没有影响.这对进一步研究SMA纤维增强复合材料的性能提供理论帮助.  相似文献   

7.
纤维增强复合材料界面强度的细观测试方法   总被引:2,自引:0,他引:2  
王清  李维学 《实验力学》1997,12(4):599-606
本文对纤维增强复合材料界面强度细观试验方法的发展及现状进行了评述,分析了各种试验方法的优点和不足。着重对纤维压入试验方法从试验的装置,试件的制备,试验的过程以及试验的理论分析方法等各方面进行了详细介绍。应用纤维压入试验测试了碳纤维增强环氧树脂复合材料的界面强度  相似文献   

8.
研究具有界面相电磁弹性纤维增强复合材料的反平面剪切问题,利用复变函数方法,获得了无穷域中带界面相纤维问题在远场力、电、磁多场作用下的闭合解,得到了复合材料内部各区域电磁弹性物理量的精确表达式.利用所得结果,考虑纤维和基体间的界面相效应,研究了界面相厚度及弹性模量对复合材料内部应力场、电场强度和磁场强度的影响,数值结果给出了复合材料电磁弹性物理量随界面相参数变化的规律,为该类复合材料的设计与计算提供了有价值的参考.  相似文献   

9.
对界面粘结性能及热残余应力影响下的单纤维复合材料的界面行为进行了分析。采用界面的弹性-软化内聚力模型,用解析法对单纤维复合材料由固化引起的热残余应力、以及单纤维碎断过程纤维的轴向应力分布进行了模拟,得到了碳纤维/环氧树脂在常温和高温固化两种情况的界面粘结性能。结果表明:与常温固化相比,高温固化后,界面的剪切强度增幅不大,界面的断裂韧性显著增加;高温固化后形成的界面,使界面的软化提前、界面的脱粘延迟;高温固化产生的纤维轴向和界面径向热残余应力对界面的软化均有延迟作用;界面径向热残余应力还对界面的脱粘有延迟作用。  相似文献   

10.
桥联模型能够有效分析复合材料的弹塑性性能,其在World-Wide Failure Exercise(WWFE)评比中被认定为精度最高的细观力学理论.桥联模型的核心是桥联矩阵,现有桥联模型是在两相复合材料理想界面条件下建立的,而对于实际的复合材料而言,纤维和基体之间总或多或少的出现界面非理想现象.学者们常用一个存在于基体和纤维之间的界面相来描述这种非理想界面情形,这时就需要建立含界面相的三相桥联矩阵.论文采用三相CCA模型,求得六种不同边界载荷下的应力场,再将各相体积平均后的应力场代入三相桥联模型方程,求解线性方程组即可得到三相桥联矩阵元素的精确表达式.进一步,将纤维相和界面相看作一个局部复合材料或等效横观各向同性纤维,其力学性能利用两相桥联模型确定,与外部的基体相构成的复合材料依然可以通过两相桥联模型分析.利用这种等效纤维的概念,论文将三相隐式桥联矩阵进行了有效简化,通过对复合材料等效弹性常数的数值计算,证明简化后的三相显式桥联矩阵与精确的三相隐式桥联矩阵有极高的近似度,从而给实际应用带来极大方便.  相似文献   

11.
金属基复合材料和强度与损伤分析   总被引:6,自引:0,他引:6  
用观察计算力学的方法分析了金属基复合材料(MMC)多重损伤与强度的关系,采用唯象的内聚力模型模拟纤维/基体界面的脱粘和采用G-T模型描述韧性基体的损伤。并用上述模型分析了长纤维增强MMC在横向荷载作用下损伤演化的规律,讨论了不同界面性质与材料强度及损伤、破坏模式之间的关系。  相似文献   

12.
A work-of-fracture method using three-point bend beam (3PBB) specimen, commonly employed to determine the fracture energy of concrete, is adapted to evaluate the mode-I cohesive fracture of fiber reinforced plastic (FRP) composite–concrete adhesively bonded interfaces. In this study, a bilinear damage cohesive zone model (CZM) is used to simulate cohesive fracture of FRP–concrete bonded interfaces. The interface cohesive process damage model is proposed to simulate the adhesive–concrete interface debonding; while a tensile plastic damage model is used to account for the cohesive cracking of concrete near the bond line. The influences of the important interface parameters, such as the interface cohesive strength, concrete tensile strength, critical interface energy, and concrete fracture energy, on the interface failure modes and load-carrying capacity are discussed in detail through a numerical finite element parametric study. The results of numerical simulations indicate that there is a transition of the failure modes controlling the interface fracture process. Three failure modes in the mode-I fracture of FRP–concrete interface bond are identified: (1) complete adhesive–concrete interface debonding (a weak bond), (2) complete concrete cohesive cracking near the bond line (a strong bond), and (3) a combined failure of interface debonding and concrete cohesive cracking. With the change of interface parameters, the transition of failure modes from interface debonding to concrete cohesive cracking is captured, and such a transition cannot be revealed by using a conventional fracture mechanics-based approach, in which only an energy criterion for fracture is employed. The proposed cohesive damage models for the interface and concrete combined with the numerical finite element simulation can be used to analyze the interface fracture process, predict the load-carrying capacity and ductility, and optimize the interface design, and they can further shed new light on the interface failure modes and transition mechanism which emulate the practical application.  相似文献   

13.
Peel test measurements and simulations of the interfacial mechanical parameters for the Al/Epoxy/Al2O3 system are performed in the present investigation. A series of Al film thicknesses between 20 and 250 microns and three peel angles of 90, 135 and 180 degrees are considered. Two types of epoxy adhesives are adopted to obtain both strong and weak interface adhesions. A finite element model with cohesive zone elements is used to identify the interfacial parameters and simulate the peel test process. By simulating and recording normal stress near the crack tip, the separation strength is obtained, Furthermore, the cohesive energy is identified by comparing the simulated steady-state peel force and the experimental result. It is found from the research that both the cohesive energy and the separation strength can be taken as the intrinsic interfacial parameters which are dependent on the thickness of the adhesive layer and independent of the film thickness and peel angle.  相似文献   

14.
传统无厚度粘结单元法CFEM (Cohesive finite element method)在模拟脆性材料断裂方面具有很强的优势,但也存在很大问题.一是单元尺寸增大,收敛性变差;二是单元尺寸变小,模型刚度发生折减.为了克服这两个问题,发展了考虑厚度的局部粘结单元法,即在裂纹可能扩展区插入具有一定厚度的粘结面单元.粘结面单元采用拓展虚内键本构(Augmented virtual internal bond)描述.由于考虑了厚度,粘结面交叉处会形成多边形空缺.为了弥补这一空缺,将其看作多边形键元胞,采用离散虚内键模型(Discretized virtual internal bond)对其建模,保证了模型的几何完整性.模拟结果表明,本文方法有效,克服了传统CFEM方法的刚度折减问题,提高了计算稳定性和收敛性.  相似文献   

15.
The propagation of interlayer cracks and the resulting failure of the interface is a typical mode occurring in rock engineering and masonry structure. On the basis of the theory of elasto~plasticity and fracture mechanics, the shear beam model for the solution of interface failure was presented. The concept of `cohesive crack’ was adopted to describe the constitutive behavior of the cohesive interfacial layer. Related fundamental equations such as equilibrium equation, constitutive equations were presented. The behavior of a double shear beam bonded through cohesive layer was analytically calculated. The stable propagation of interface crack and process zone was investigated.  相似文献   

16.
The elastic analysis of interfacial stresses in plated beams has been the subject of several investigations. These studies provided both first-order and higher-order solutions for the distributions of interfacial shear and normal stresses close to the plate end in the elastic range. The notable attention devoted to this topic was driven by the need to develop predictive models for plate end debonding mechanisms, as the early models of this type adopted debonding criteria based on interfacial stresses. Currently, approaches based on fracture mechanics are becoming increasingly established. Cohesive zone modeling bridges the gap between the stress- and energy-based approaches. While several cohesive zone analyses of bonded joints subjected to mode-II loading are available, limited studies have been conducted on cohesive zone modeling of interfacial stresses in plated beams. Moreover, the few available studies present complex formulations for which no closed-form solutions can be found. This paper presents an analytical cohesive zone model for the determination of interfacial stresses in plated beams. A first-order analysis is conducted, leading to closed-form solutions for the interfacial shear stresses. The mode-II cohesive law is taken as bilinear, as this simple shape is able to capture the essential properties of the interface. A closed-form expression for the debonding load is proposed, and the comparison between cohesive zone modeling and linear-elastic fracture mechanics predictions is discussed. Analytical predictions are also compared with results of a numerical finite element model where the interface is described with zero-thickness contact elements, using the node-to-segment strategy and incorporating decohesion and contact within a unified framework.  相似文献   

17.
In this paper, a mixed numerical-experimental approach is adopted to quantitatively investigate and characterize delamination in polymer coated steel. The integral bi-material system is analysed and special attention is given to the constitutive modelling of the polymer coating, the interface and the determination of all involved parameters. An extended cohesive zone model for large displacements is proposed, allowing for a mode-dependent behaviour in large deformations. Finally, peel tests are used to characterize the interface, whereby the interfacial properties are determined through an inverse parameter identification procedure.  相似文献   

18.
19.
Existing cohesive zone models assume that actual fracture zone of non-zero mass can be modeled by a line segment (cohesive zone) with no mass and inertia. In the present work, a simplified mass-spring model is presented to study inertia effect of cohesive zone on a mode-I steady-state moving crack. It is showed that fracture energy predicted by the present model increases dramatically when a finite limiting crack speed is approached. Reasonable agreement with known experiments indicates that the present model has the potential to catch the inertia effect of cohesive zone which has been ignored in existing cohesive zone models and better simulate dynamic fracture at high crack speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号