首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
主要探讨竖直管道中不同颗粒级配、流体流速条件下的固-液两相流动的流态化规律.首先通过量纲分析获得关键控制参数,然后以玻璃珠(粒径:0.25 mm~2.0 mm)、粉细砂(d10=0.044 mm)两种固体和水为实验介质,开展了两相流动流态化实验,考虑流体流速(相对于管道雷诺数介于640~3 300之间)和颗粒级配的影响.通过分析发现:具有均匀粒径分布的玻璃珠床,床层膨胀高度随流速的增加而增加,流速与浓度的对数呈线性关系,与Richardson--Zaki公式一致;具有较宽粒径分布的粉细砂,细颗粒随水流逐渐流出管道,剩余颗粒质量与雷诺数呈指数递减趋势.  相似文献   

2.
Nonlinearities arise in aerodynamic flows as a function of various parameters, such as angle of attack, Mach number and Reynolds number. These nonlinearities can cause the change from steady to unsteady flow or give rise to static hysteresis. Understanding these nonlinearities is important for safety validation and performance enhancement of modern aircraft. A continuation method has been developed to study nonlinear steady state solutions with respect to changes in parameters for two‐dimensional compressible turbulent flows at high Reynolds numbers. This is the first time that such flows have been analysed with this approach. Continuation methods allow the stable and unstable solutions to be traced as flow parameters are changed. Continuation has been carried out on two‐dimensional aerofoils for several parameters: angle of attack, Mach number, Reynolds number, aerofoil thickness and turbulent inflow as well as levels of dissipation applied to the models. A range of results are presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
垂直湍流液-固流中大颗粒的相对速度   总被引:4,自引:0,他引:4  
通过量纲分析和实验测量,对于垂直、局部均匀的湍流稀态液一固流中,大颗粒的相对速度,建立了无量纲参数表达式.用分析和实验相结合的方法,确定了表达式中无量纲参数的幂次及有关系数.实验中用激光多普勒分相测量技术,分别测出流体和颗粒的时均速度结果表明,大颗粒相对速度强烈依赖于流体雷诺数,当流体雷诺数较高时,其幂次渐近于1.5。  相似文献   

4.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Three‐dimensional computations have been performed to study the flow through a symmetric sudden expansion with an expansion ratio of 3 at low Reynolds numbers. The aspect ratio of the flow channel is allowed to vary within a wide range to examine its influence on the flow which bifurcates from a symmetric state to an asymmetric state. The results reveal that the critical Reynolds number of the symmetry‐breaking bifurcation increases while the aspect ratio is reduced. The flow behaviour near the side walls is illustrated by using limiting streamlines. The origin of the singular points identifiable on the side wall can be traced back to the recirculating flows and the relevant reattachment/separation points in the core of the channel. It is seen that the determination of the exact critical Reynolds number is not trivial because it depends on how to define asymmetric flow. Computations have also been conducted to show that a slight asymmetry in the channel geometry causes a smooth transition from symmetric to non‐symmetric states. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
亚临界雷诺数下圆柱绕流的大涡模拟   总被引:20,自引:0,他引:20  
苏铭德  康钦军 《力学学报》1999,31(1):100-105
本文应用Smagorinsky涡粘性模式和二阶精度的有限体积法对圆柱绕流的流场进行大涡模拟.求解了非正交曲线坐标系下的N-S方程,对雷诺数为100和20000的工况进行了计算.计算结果与实验及动力涡粘性模式的结果进行了比较,表明计算对于层流及高亚临界雷诺数的湍流流动是合理的  相似文献   

7.
Two‐dimensional laminar incompressible impinging slot‐jet is simulated numerically to gain insight into flow characteristics.Computations are done for vertically downward‐directed slot‐jets impinging on a plate at the bottom and confined by a parallel surface on top. The behaviour of the jet with respect to aspect ratio (AR) and Reynolds number (Re) are described in detail. The computed flow patterns for various AR (2–5) and for a range of jet‐exit Reynolds numbers (100–500) are analysed to understand the flow characteristics. The transient development of the flow is also simulated for AR = 4 and Re = 300. It is found that the reattachment length is dependent on both AR and Reynolds number for the range considered. The correlation for reattachment length is suggested. The maximum resultant velocity Vrmax and its trajectory is reported. A detailed study of horizontal velocity profile at different downstream locations is reported. It is found that the effect of Reynolds number and AR is significant to the bottom wall vorticity in the impingement and wall jet regions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
It is assumed in this paper that for a high Reynolds number nearly homogeneouswind flow, the Reynolds stresses are uniquely related to the mean velocity gradientsand the two independent turbulent scaling parameters k and E. By applying dimensionalanalysis and owing to the Cayley-Hamilton theorem for tensors, a new turbulenceenclosure model so-called the axtended k-ε model has been developed. The coefficientsof the model expression were detemined by the wind tunnel experimental data ofhomogeneous shear turbulent flow. The model was compared with the standard k-εmodel in in composition and the prediction of the Reynold’s normal Stresses. Using thenew model the numerical simulation of wind flow around a square cross-section tallbuilding was performed. The results show that the extended k-ε model improves theprediction of wind velocities around the building the building and wind pressures on the buildingenvelope.  相似文献   

9.
A continuation method has been used with a finite element grid and a geometric perturbation to compute two successive symmetry breaking flow transitions with increasing Reynolds number in flow of generalized Newtonian fluids through a sudden planar expansion. With an expansion ratio of 16, the onset Reynolds number is particularly sensitive to small geometric asymmetry and the critical Reynolds numbers for the two successive flow transitions are found to be very close. These transitions are delayed to higher onset Reynolds numbers by increasing the degree of pseudoplasticity. This trend is observed experimentally as well in this work and may be attributed to the competing effects of shear thinning and inertia on the size of the corner vortex before the symmetry breaking flow transition. After the second transition with an expansion ratio of 16, the two large staggered vortices on opposite walls occupy most of the transverse dimension so that the core flow between the vortices appears as a thin jet oscillating along the flow direction. This is more pronounced for the pseudoplastic liquid. After the second transition, the degree of flow asymmetry at a given location downstream of the expansion plane is larger for the pseudoplastic liquid than for the Newtonian liquid at comparable Reynolds numbers. The last feature is also evident in the experimentally observed velocity profiles. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The wall effects are investigated in the three‐dimensional laminar flow over a backward‐facing step. For this purpose, a numerical experiment is designed under actual laboratory conditions. The aspect ratio of the computational domain is 1:40 and the expansion ratio is 1:2. The Reynolds number ranges from 100 to 950. The governing equations are the steady state, isothermal and incompressible Navier–Stokes equations for Newtonian fluids. They are solved with a homemade Galerkin finite element code. The computations are validated with data from available laboratory and numerical experiments. The results focus on the variation of both velocity profiles and lengths of eddies along the lower and upper wall in the spanwise direction. Calculated streamlines in the streamwise and transverse direction show how the flow is distorted near the lateral wall and how it develops up to the plane of symmetry. The study of skin friction lines along the top and bottom wall of the domain reveals a flow that takes place in the spanwise direction. This spanwise component of the flow becomes more dominant with increasing Reynolds number and is impossible to be sustained at steady state for Reynolds numbers higher than 950 for this particular geometry. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N<1), the suppression of the flow‐separation is nearly independent of the conductivity of the fluid, whereas for large interaction parameters, the conductivity of the fluid strongly influences the control of flow‐separation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The influence of the inlet flow formation mode on the steady flow regime in a circular pipe has been investigated experimentally. For a given inlet flow formation mode the Reynolds number Re* at which the transition from laminar to turbulent steady flow occurred was determined. With decrease in the Reynolds number the difference between the resistance coefficients for laminar and turbulent flows decreases. At a Reynolds number approximately equal to 1000 the resistance coefficients calculated from the Hagen-Poiseuille formula for laminar steady flow and from the Prandtl formula for turbulent steady flow are equal. Therefore, we may assume that at Re > 1000 steady pipe flow can only be laminar and in this case it is meaningless to speak of a transition from one steady pipe flow regime to the other. The previously published results [1–9] show that the Reynolds number at which laminar goes over into turbulent steady flow decreases with increase in the intensity of the inlet pulsations. However, at the highest inlet pulsation intensities realized experimentally, turbulent flow was observed only at Reynolds numbers higher than a certain value, which in different experiments varied over the range 1900–2320 [10]. In spite of this scatter, it has been assumed that in the experiments a so-called lower critical Reynolds number was determined, such that at higher Reynolds numbers turbulent flow can be observed and at lower Reynolds numbers for any inlet perturbations only steady laminar flow can be realized. In contrast to the lower critical Reynolds number, the Re* values obtained in the present study, were determined for given (not arbitrary) inlet flow formation modes. In this study, it is experimentally shown that the Re* values depend not only on the pipe inlet pulsation intensity but also on the pulsation flow pattern. This result suggests that in the previous experiments the Re* values were determined and that their scatter is related with the different pulsation flow patterns at the pipe inlet. The experimental data so far obtained are insufficient either to determine the lower critical Reynolds number or even to assert that this number exists for a pipe at all.  相似文献   

13.
ABSTRACT

Direct numerical simulations of temporally evolving supersonic turbulent channel flow of thermally perfect gas are conducted at Mach number 3.0 and Reynolds number 4800, combined with constant dimensional wall temperatures from 149.075 to 1788.90?K to study the influence of dimensional wall temperature on the characteristics of Reynolds stress budgets. It is found that, as the dimensional wall temperature increases, the production, diffusion, pressure–velocity gradient correlation and dissipation terms increase, whereas the compressibility-related term decreases. This is mainly due to variations in mean flow properties. The mechanism of inter-component transfer (ICT) is insensitive to the dimensional wall temperature. The ICT relating to the pressure–velocity gradient correlation term can be divided into inner and outer regions, and the critical position separating these regions is at the semi-local scaling of approximately 16 irrespective of the different dimensional wall temperature.  相似文献   

14.
A numerical method is developed for investigating the two‐dimensional unsteady viscous flow over an inclined elliptic cylinder placed in a uniform stream of infinite extent. The direction of the free stream is normal to the cylinder axis and the flow field unsteadiness arises from two effects, the first is due to the flow field development following the start of the motion and the second is due to vortex shedding in the wake region. The time‐dependent flow is governed by the full conservation equations of mass and momentum with no boundary layer approximations. The parameters involved are the cylinder axis ratio, Reynolds number and the angle of attack. The investigation covers a Reynolds number range up to 5000. The minor–major axis ratio of the elliptic cylinder ranges between 0.5 and 0.6, and the angle of attack ranges between 0° and 90°. A series truncation method based on Fourier series is used to reduce the governing Navier–Stokes equations to two coupled infinite sets of second‐order differential equations. These equations are approximated by retaining only a finite number of terms and are then solved by approximating the derivatives using central differences. The results reveal an unusual phenomenon of negative lift occurring shortly after the start of motion. Various comparisons are made with previous theoretical and experimental results, including flow visualizations, to validate the solution methodology. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Fully developed turbulence measurements in pipe flow were made in the Reynolds number ranging from 10×103 to 350×103 with a hot-wire anemometer and a Pitot tube. Comparisons were made with the experimental results of previous work. The mean velocity profile and the turbulent intensity in the experiments indicate that for the mean velocity profile, in the fully developed turbulent pipe flow, von Kármán's constant κ is a function of Reynolds number, i.e. κ increases slowly with the Reynolds number. The empirical relationships could not be considered to be accurate enough to describe the fully developed turbulence over the whole Reynolds number range in pipe flow. The project supported by the Deutscher Akademische Austauschdienst (DAAD)  相似文献   

16.
本文采用两种不同的处理液处理玻璃管道内壁,改变管内壁与流体水之间的粘附功,研究了粘附功对光滑直管内流动阻力的影响。试验结果表明,在管壁与液体间的粘附功小于液体的内聚功条件下,当液体的雷诺数大于临界雷诺数时可显现明显的内流减阻效果。  相似文献   

17.
In this paper, the extension of an upwind least‐square based meshless solver to high Reynolds number flow is explored, and the properties of the meshless solver are analyzed both theoretically and numerically. Existing works have verified the meshless solver mostly with inviscid flows and low Reynolds number flows, and in this work, we are interested in the behavior of the meshless solver for high Reynolds number flow, especially in the near‐wall region. With both theoretical and numerical analysis, the effects of two parameters on the meshless solver are identified. The first one is the misalignment effect caused by the significantly skewed supporting points, and it is found that the meshless solver still yields accurate prediction. It is a very interesting property and is opposite to the median‐dual control volume based vertex‐centered finite volume method, which is known to give degraded result with stretched triangular/tetrahedral cells in the near‐wall region. The second parameter is the curvature, and according to theoretical analysis, it is found in the region with both large aspect ratio and curvature, and the streamwise residual is less affected; however, the wall‐normal counterpart suffers from accuracy degradation. In this paper, an improved method that uses a meshless solver for the streamwise residual and finite difference for wall‐normal residual is developed. This method is proved to be less sensitive to the curvature and provides improved accuracy. This work presents an understanding of the meshless solver for high Reynolds number flow computation, and the analysis in this paper is verified with a series of numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection through the surface of the disks. The fluid is subjected to an external transverse magnetic field. The governing nonlinear equations of motion are transformed into a dimensionless form through von Karman’s similarity transformation. An algorithm based on a finite difference scheme is used to solve the reduced coupled ordinary differential equations under associated boundary conditions. The effects of the Reynolds number, the magnetic parameter, the micropolar parameter, and the Prandtl number on the flow velocity and temperature distributions are discussed. The results agree well with those of the previously published work for special cases. The investigation predicts that the heat transfer rate at the surfaces of the disks increases with the increases in the Reynolds number, the magnetic parameter, and the Prandtl number. The shear stresses decrease with the increase in the injection while increase with the increase in the applied magnetic field. The shear stress factor is lower for micropolar fluids than for Newtonian fluids, which may be beneficial in the flow and thermal control in the polymeric processing.  相似文献   

19.
A low‐dimensional spectral method is used to solve the transient axisymmetric free surface flow inside thin cavities of arbitrary shape. The flow field is obtained on the basis of the lubrication equations, which are expanded in terms of orthonormal functions over the cavity gap. The formulation accounts for nonlinearities stemming from inertia and front location. The work is of close relevance to the filling stage during die casting, and injection molding, or the flow inside annular (extrusion) dies. Both flows under an imposed flow rate, and an imposed pressure at the cavity entrance are examined. The influence of inertia, aspect ratio, gravity, and wall geometry on the evolution of the front, flow rate, and pressure is assessed particularly in the early stage of flow, when a temporal behavior of the ‘boundary‐layer’ type develops. The multiple‐scale method is applied to obtain an approximate solution at small Reynolds number, Re. Comparison with the exact (numerical) solution indicates a wide range of validity for the multiple‐scale approach, including the moderately small Re range. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Turbulent flow in a compound meandering open channel with seminatural cross sections is one of the most complicated turbulent flows as the flow pattern is influenced by the combined action of various forces, such as centrifugal force, pressure, and shear stresses. In this paper, a three‐dimensional (3D) Reynolds stress model (RSM) is adopted to simulate the compound meandering channel flows. Governing equations of the flow are solved numerically with finite‐volume method. The velocity fields, wall shear stresses, and Reynolds stresses are calculated for a range of input conditions. Good agreement between the simulated results and measurements indicates that RSM can successfully predict the complicated flow phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号