首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
白少先  黄平 《摩擦学学报》2003,23(6):537-540
针对二阶流体薄膜润滑在润滑方程中引入二阶流体和弹性变形,在考虑薄膜润滑状态下的非牛顿性和类固体性的基础上,建立了薄膜润滑的粘变数学模型,并针对线接触弹流薄膜润滑进行了数值计算.结果表明,在相同载荷下基于粘变模型计算得到的膜厚同牛顿流体相应的膜厚相比大得多,而粘变薄膜厚度同速度的相关性比牛顿流体的小得多,且粘变薄膜能够承受更大的载荷;所建立的粘变模型适用于薄膜润滑的理论计算.  相似文献   

2.
表面微织构对球盘点接触润滑摩擦性能的影响   总被引:3,自引:2,他引:1  
基于统一Reynolds方程系统模型开展了富油点接触工况下微织构表面润滑摩擦性能的数值模拟研究.在通过实验标定数值模拟中润滑剂流变参数的基础上,系统分析了微织构表面摩擦系数周期变化的全过程,初步揭示了微织构的减摩机理.结果表明:数值模拟结果与实验结果有较好的吻合;瞬时摩擦系数达到最小值时,微坑单元一般处于名义Hertz接触区域的前边界;当微坑运动到Hertz接触区域内时,微坑前沿局部膜厚减小,而微坑后边沿膜厚局部增大,形成局部膜厚增大区;局部膜厚增大区的大小对微织构的润滑摩擦性能有较大影响,其面积越大,减摩效果越好.  相似文献   

3.
弹流润滑与薄膜润滑转化关系的研究   总被引:12,自引:8,他引:4  
采用NGY-2型纳米级膜厚测量仪,研究了润滑膜厚度与各工况因素之间的关系,分析了薄膜润滑的机理,探讨了膜厚、速度、润滑油粘度等各因素对弹流润滑与薄膜润滑之间转化的影响,建立了转化临界膜厚值与润滑剂表观粘度的关系。  相似文献   

4.
粗糙度纹理对有限长线接触混合润滑影响   总被引:2,自引:1,他引:1  
采用统一Reynolds方程建立有限长线接触混合润滑模型,研究横向、纵向和二维规则表面粗糙度的波长、幅值及工况变化对润滑影响.结果表明:波长、幅值与工况对三种表面粗糙度接触副的润滑影响类似;随着载荷增大,平均膜厚降低,摩擦系数、接触载荷比与接触面积比均增大;随着转速升高,平均膜厚增大,摩擦系数、接触载荷比与面积比均降低,其中摩擦系数随转速进一步增大而小幅升高.在润滑状态转换区域润滑特征参数变化显著,而其他润滑区域变化平缓.沿卷吸速度方向的压力与膜厚波动分布存在相位差,垂直方向则同相位;相同的工况和粗糙度参数时,纵向粗糙度分布更有利于接触润滑.  相似文献   

5.
建立了含有固体颗粒的弹流数学模型,修正了Reynolds方程,考虑了连续波状粗糙度的影响,对跑合过程中直齿轮轮齿啮合区的弹流润滑进行了数值解算,分析了固体颗粒和粗糙度对压力、膜厚和温度的影响。结果表明,连续波状粗糙度会引起压力和膜厚一定幅度的上下波动,考虑固体颗粒后,压力变大,膜厚减小;颗粒速度越大,膜厚越小,最小膜厚减小,最大温升一定幅度减小,颗粒所在区域的温升减小;粗糙度波长较小时,粗糙度对膜厚较小的接触区引起的温升较大。  相似文献   

6.
基于计入惯性项的Navier-Stokes方程和连续性方程,建立了计入油膜惯性作用的椭圆接触弹性流体润滑模型,研究了油膜惯性对椭圆接触弹流润滑性能的影响. 弹性变形通过快速傅里叶变换(FFT)计算,而油膜压力通过复合直接迭代法求解. 数值结果表明:在计入油膜惯性作用后,润滑膜的二次压力峰增大,入口区的油膜速度减小,且逆流区范围扩大;考虑油膜惯性作用后油膜厚度有所增大,当载荷从300 N增加到700 N时,中心膜厚最大增加了5.14%. 试验结果也表明,考虑油膜惯性作用后的中心膜厚数值解与试验结果更加接近.   相似文献   

7.
建立了含有固体颗粒的弹流数学模型,修正了Reynolds方程,考虑了连续波状粗糙度的影响,对跑合过程中直齿轮轮齿啮合区的弹流润滑进行了数值解算,分析了固体颗粒和粗糙度对压力、膜厚和温度的影响。结果表明,连续波状粗糙度会引起压力和膜厚一定幅度的上下波动,考虑固体颗粒后,压力变大,膜厚减小;颗粒速度越大,膜厚越小,最小膜厚减小,最大温升一定幅度减小,颗粒所在区域的温升减小;粗糙度波长较小时,粗糙度对膜厚较小的接触区引起的温升较大。  相似文献   

8.
考虑滚道表面油层分布的滚动轴承润滑分析   总被引:3,自引:0,他引:3  
研究表明供油量对弹流润滑性能产生显著影响.滚动轴承中由于离心力和滚动体的反复滚压,滚道表面上的润滑剂呈现出非均匀分布的特点.大多数润滑剂被推挤到滚道的两侧,致使接触区的入口间隙不能被完全充满,导致乏油润滑,滚动体与滚道间接触压力接近于赫兹压力分布,膜厚较全膜润滑有明显的减小.本文基于润滑剂的流量连续建立滚道表面油层厚度分布模型,考虑润滑接触压力的影响,计算滚道上的侧流量以预测轴承滚道上补给油层厚度及形状随时间的变化规律;进而以此作为滚动体和滚道接触区的入口油层厚度,采用统一Reynolds方程法数值模拟计算每个时刻轴承滚道与滚动体之间的润滑油膜厚度,压力分布等参数,分析轴承在点接触乏油条件下运行的润滑性能.  相似文献   

9.
区别于基于半空间理论的传统直齿轮弹流润滑模型,本文基于有限长空间解建立考虑轮齿自由端面影响的渐开线直齿轮有限长弹流润滑模型. 采用叠加法构造自由端面,矩阵法和半解析法求解自由端面的影响,快速傅里叶变换算法加速齿面弹性变形计算;采用统一Reynolds方程法求解油膜压力和油膜厚度. 以啮合节点为特征位置,分析比较不同压力角下自由端面对直齿轮弹流润滑的影响. 结果表明:与半空间模型比较,考虑自由端面后端面峰值压力降低,压力分布更均匀,最小油膜厚度增大;增大轮齿压力角,节点压力水平减小,油膜厚度增大;当压力角不同时,自由端面对齿轮弹流润滑压力峰值的影响基本相当,对最小膜厚的影响较大.   相似文献   

10.
润滑力学中非牛顿流动的普遍Reynolds方程   总被引:5,自引:0,他引:5  
杨沛然  温诗铸 《力学学报》1991,23(3):283-289
本文导出了润滑力学中关于非牛顿流动的普遍 Reynolds 方程。这一方程适用于多种非牛顿流动模型,可以用于解算热流体动力润滑或热弹性流体动力润滑膜的压力分布。本文给出了一种同时求出剪应力、剪切率、速度和等效粘度的解法,并以两种润滑力学中常用的流变模型为例,应用这一方程得到了线接触热弹性流体动力润滑问题的数值解。  相似文献   

11.
薄膜润滑中双电层效应的理论分析与实验研究   总被引:1,自引:0,他引:1  
建立了考虑双电层效应的有限宽组合滑块薄膜润滑数学模型,并利用组合滑块与圆盘的滑动摩擦试验对双电层效应进行研究,利用实验结果修正了润滑过程中双电层效应的计算,给出电粘度的计算公式并进行数值分析.结果表明:在薄膜厚度较薄的情况下,双电层效应使得流体的等效粘度随膜厚减小而迅速增加;随着膜厚增加,双电层的电粘度效应逐渐减弱;随着电场强度增加,双电层的电粘度效应增加,当电场强度达到一定程度时,双电层的电粘度效应开始减弱.  相似文献   

12.
韩素立  郭峰  邵晶  李超 《摩擦学学报》2017,37(4):442-448
沿润滑油膜厚度方向的剪切流速分布是影响机械部件润滑性能的重要因素.为此,搭建了基于荧光漂白成像的微间隙油膜剪切流速分布测量平台.通过对漂白区域形状演化过程进行图像分析,获得了微米量级间隙中的PB450和PAO6润滑油膜的剪切速度分布.结果表明:在设定测试条件下,厚度为8.5μm的PB450油膜沿膜厚方向的剪切流速近似为典型的线性分布,而相同厚度下的PAO6油膜流速分布表现为非线性塞流,界面附近油膜黏度较中层显著下降.研究还发现,同一滑动速度下,PAO6剪切流速偏离线性分布的程度随膜厚的降低而增加.经过比对分析,试验结果与流体动压润滑条件下的相关数据吻合.  相似文献   

13.
Based on the couple-stress theory, the elastohydrodynamic lubrication(EHL)contact is analyzed with a consideration of the size effect. The lubricant between the contact surface of a homogeneous coated half-plane and a rigid punch is supposed to be the non-Newtonian fluid. The density and viscosity of the lubricant are dependent on fluid pressure. Distributions of film thickness, in-plane stress, and fluid pressure are calculated by solving the nonlinear fluid-solid coupled equations with an iterative method. The effects of the punch radius, size parameter, coating thickness, slide/roll ratio, entraining velocity, resultant normal load, and stiffness ratio on lubricant film thickness, in-plane stress, and fluid pressure are investigated. The results demonstrate that fluid pressure and film thickness are obviously dependent on the size parameter, stiffness ratio, and coating thickness.  相似文献   

14.
In this paper, a theoretical study of the effect of surface roughness in hydrodynamic lubrication of a porous journal bearing with couplestress fluid as lubricant is made. The modified Reynolds equations accounting for the couple stresses and randomized surface roughness structure are mathematically derived. The Christensen stochastic theory of hydrodynamic lubrication of rough surfaces is used to study the effects of surface roughness on the static characteristics of a short porous journal bearing with couplestress fluid as lubricant. Further, it is assumed that, the roughness asperity heights are small compared to the film thickness. It is observed that, the effects of surface roughness on the bearing characteristics are more pronounced for couplestress fluids as compared to the Newtonian fluids.  相似文献   

15.
粘塑性流体的界面滑移对润滑性能的影响研究   总被引:3,自引:0,他引:3  
黄平 《力学学报》1999,31(6):745-752
首先指出经典润滑理论中的边界无滑移条件已不再适用于具有极限剪应力的粘塑性流体润滑.而后,通过确定最大剪应力位置和加入剪应力边界条件,建立了界面滑移后的润滑方程.在联立求解不同区域的润滑方程基础上,对界面滑移的开始位置及扩展方式进行了分析.最后,讨论了不同膜厚比下滑移对润滑性能的影响.  相似文献   

16.
方燕飞  马丽然 《摩擦学学报》2022,42(6):1138-1147
针对球-盘滑动试验,在磨合过程中获得超低摩擦的液体润滑状态,建立耦合流体润滑、粗糙接触力学、Archard磨损方程和相关物理参数(液体黏度、表面粗糙度和磨损系数)时变函数的混合模型,研究磨合过程中液体润滑的摩擦系数演化. 通过数值模拟结果可知:在磨合过程中,润滑介质等效黏度增大,形成流体动压润滑薄膜,有效隔开粗糙表面;其次在磨合过程中,新生成的表面粗糙度降低,减少粗糙峰承载比,实现超低摩擦润滑状态;最后在适当的液体黏度和提高表界面效应减少边界摩擦系数,可进一步实现液体超低摩擦润滑状态. 为磨合过程宏观液体润滑性能演化所建立的混合数值模型对提高液体润滑超低摩擦设计效率具有重要价值意义.   相似文献   

17.
往复运动齿轮齿条的润滑失效通常发生在换向死点位置附近,因此研究齿轮齿条换向点位置和换向持续时间对换向过程中润滑油膜的影响具有重要的实际意义。根据齿轮齿条换向瞬间的运动几何关系,建立了换向过程齿轮齿条弹流润滑的瞬态数值模型。采用Ree-Eyring润滑流体,应用多重网格法和多重网格积分法等数值方法,计算得到了齿轮齿条往复运动过程中换向点位置附近一对啮合轮齿间的压力、膜厚和温度,并与前人的实验结果进行了对比验证。分析了不同换向持续时间和换向点位置对一对啮合轮齿间压力、膜厚和温度的影响。齿轮齿条换向过程中油膜厚度明显降低,缩短换向持续时间虽然可以增大齿轮齿条的润滑膜厚,但会导致瞬间油温升高,因此换向持续时间存在最优值。通过比较不同换向死点位置的膜厚发现,当换向死点在单齿啮合后的双齿啮合区时,啮合轮齿间具有较理想的润滑膜厚。无论换向持续时间长短,润滑膜厚的最小值都在换向死点位置,换向死点位置是往复运动齿轮齿条润滑失效的危险点。研究结果为往复运动齿轮齿条的润滑设计提供了理论依据。  相似文献   

18.
固体边界具有的微纳米结构将影响流体在近壁面处的流动行为,进而由于尺度效应改变流体在整个微间隙的流动或润滑规律.将壁面可渗透微纳米结构等效为多孔介质薄膜,采用Brinkman方程来描述流体在近壁面边界渗透层内的流动,并将其与自由流动区域的不可压缩流体Navier-Stokes控制方程耦合,在界面处的连续边界条件下求解和分析了速度分布规律和压力变化规律.针对恒定法向承载力的油膜润滑条件,进一步讨论了静止表面或运动表面的微纳米结构对近壁面流动行为的影响;并揭示了考虑壁面微纳米结构的流体动压润滑的油膜厚度和摩擦系数的变化规律.论文结果为具有可渗透微结构表面的微间隙流动与润滑提供了理论参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号