首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper reports an experimental study of the motion of dissolving and non-dissolving gas bubbles in a quiescent viscoelastic fluid. The objective of the investigation was to determine the influence of the abrupt transition in bubble velocity, which had been observed at a critical radius of approx. on the rate of mass transfer. Thus, a range of bubble sizes from an equivalent (spherical) radius of 0.2–0.4 cm was employed using CO2 gas, and five different fluids, including one Newtonion glycerine/water solution and four viscoelastic solutions of Separan AP30 in water (0.1, 0.5, 1% by weight) and in a water/glycerine mixture.The experimental data on bubble velocity shows that the discontinuous increase with bubble volume observed previously for air bubbles in viscoelastic fluids, does not occur for dissolving CO2 bubbles—presumably due to the continuous decrease in bubble volume. Instead, a very steep but definitely continuous transition is found. Mass transfer rates are found to be significantly enhanced by viscoelasticity, and comparison with available theoretical results shows that the increase is greater than expected for purely viscous, power-law fluids. We conclude that a fully viscoelastic constitutive model would be necessary for a successful analysis of the dissolution of a gas bubble which is translating through a (high molecular weight) polymer solution.  相似文献   

2.
3.
刘春嵘  周显初 《力学学报》1999,31(2):129-136
研究球形小气泡在理想流体的波浪场中的气体扩散过程,把小雷诺数下均匀来流绕流球形气泡的气体交换结果与气泡运动方程耦合在一起进行求解.讨论了溶解于水中的气体浓度、波浪、气泡半径、气泡初始深度对单个气泡气体扩散量的影响.由于气泡云对气体的输运,溶解于水中的气体可出现过饱和状态.对10m/s风速下气泡云的气体输运量进行了计算,得到水中O2的过饱和度可达1.89%~392%,与实际观测值一致.  相似文献   

4.
The growth and collapse of gaseous bubbles near a movable or deformable body are investigated numerically using the boundary element method and fluid–solid coupling technique. The fluid is treated as inviscid, incompressible and the flow irrotational. The unsteady Bernoulli equation is applied on the bubble surface as one of the boundary conditions of the Laplace’s equation for the potential. Good agreements between the numerical and experimental results demonstrate the robustness and accuracy of the present method. The translation and rotation of the rigid body due to the bubble evolution are captured by solving the six-degrees-of-freedom equations of motion for the rigid body. The fluid–solid coupling is achieved by matching the normal component of the velocity and the pressure at the fluid–solid interface. Compared to a fixed rigid body, the expansion of the bubble is not affected too much but much faster collapsing velocities during the collapsing phase of bubble can be observed when considering the motion of the rigid body. The rigid body is pushed away as the bubble grows and moved toward the bubble as the bubble collapses. The motion of two bubbles near a movable cylinder is also simulated. The large rotation of the cylinder and obvious deformation and distortion for the bubble in close proximity to a curved wall are observed in our codes. Finally, the growth and collapse of bubble near a deformable ellipsoid shell are also simulated using the combination of boundary element method (BEM) and finite element method (FEM) techniques. The oscillations of the ellipsoid shell can be observed during the growth and collapse of bubble, which much differs from the results obtained by only considering effects of a rigidly movable body on the bubble evolution.  相似文献   

5.
This paper investigates the role of viscoelasticity on the dynamics of rising gas bubbles. The dynamics of bubbles rising in a viscoelastic liquid are characterised by three phenomena: the trailing edge cusp, negative wake, and the rise velocity jump discontinuity. There is much debate in the literature over the cause of the jump discontinuity, which is observed once the bubble exceeds a certain critical volume. In this paper, the employment of some choice modelling assumptions allows insights into the mechanisms of the jump discontinuity which cannot be ascertained experimentally. The ambient fluid is assumed incompressible and the flow irrotational, with viscoelastic effects included through the stress balance on the bubble surface. The governing equations are solved using the boundary element method. Some Newtonian predictions are discussed before investigating the role of viscoelasticity. The model predicts the trademark cusp at the trailing end of a rising bubble to a high resolution. However, the irrotational assumption precludes the prediction of the negative wake. The corresponding absence of the jump discontinuity supports the hypothesis that the negative wake is primarily responsible for the jump discontinuity, as mooted in previous studies.  相似文献   

6.
Transport models of diffusion-induced bubble growth in viscoelastic liquids are developed and evaluated. A rigorous model is formulated that can be used to describe bubble growth or collapse in a non-linear viscoelastic fluid, and takes into account convective and diffusive mass transport as well as surface tension and inertial effects. Predictions for bubble growth dynamics demonstrating the importance of fluid elasticity are presented. These predictions indicate that for diffusion-induced bubble growth in viscoelastic liquids, the lower bound for growth rate is given by growth in a Newtonian fluid and the upper bound by diffusion-controlled growth. The influence of non-linear fluid rheology on bubble growth dynamics is examined and found to be relatively minor in comparison to fluid elasticity. It is shown how previously published models employing various approximations can be derived from the rigorous model. Comparisons of predicted bubble growth dynamics from the rigorous and approximate models are used to establish the ranges of applicability for two commonly-used approximations. These comparisons indicate that models using a thin boundary layer approximation have a rather limited range of applicability. An analysis of published experimental bubble growth data is also carried out using appropriate transport models.  相似文献   

7.
This paper is concerned with the analysis of motion of a gas bubble in a uniformly oscillating incompressible fluid. A theoretical model explaining the effect of sinking of gas bubbles in the absence of a standing pressure wave is validated experimentally. The conditions under which this effect occurs are determined, and a simple formula is derived for the average velocity of a gas bubble in the fluid.  相似文献   

8.
The dynamics of bubble formation from a submerged nozzle in a highly viscous liquid with relatively fast inflow gas velocity is studied numerically. The numerical simulations are carried out using a sharp interface coupled level set/volume-of-fluid (CLSVOF) method and the governing equations are solved through a hydrodynamic scheme with formal second-order accuracy. Numerical results agree well with experimental results and it is shown that the sharp interface CLSVOF method enables one to reproduce the bubble formation process for a wide range of inflow gas velocities. From numerical results, one can improve their understanding of the mechanisms regarding the dynamics of bubble formation. For example, it is found that for some sets of parameters that the bubble formation process reaches steady state after several bubbles are released from the nozzle. At steady state, bubbles uniformly rise freely in the viscous liquid. It is observed that the fluid flow around a formed bubble has a significant role in determining the overall dynamic process of bubble formation; e.g. the effect of the fluid flow from the preceding bubble can be seen on newly formed bubbles.  相似文献   

9.
The phenomenon of thermal relaxation of the gas bubbles in a fluid behind a shock front is analyzed. The approach to solving the problem of heat transfer between a gas bubble and a fluid developed by the author is used to obtain a solution describing the initial stage of bubble collapse behind the shock front.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 187–189, September–October, 1993.  相似文献   

10.
为了解药包在距离结构较近时水下爆炸气泡对水中结构冲击的影响,假设圆柱壳结构附近气泡的位移为自由场中气泡由于浮力产生位移和圆柱壳对气泡吸引产生位移的和,并建立了简化射流模型,对射流冲击下圆柱壳板架所产生的毁伤效应进行研究,分析了破坏形式,拟为水下爆炸气泡射流对船体的毁伤提供参考。  相似文献   

11.
The influence of the yield stress of Carbopol® gel dispersions on the behaviour of quasi-static bubbles was investigated. Many fluids, from many different industrial fields, have yield stress behaviour. Most of them contain gas bubbles. To study bubble behaviour in such suspensions, a transparent model fluid (dispersion of Carbopol® in water) was used. The experimental device allowed to quasi-statically increase bubble internal pressure with small pressure step to reach a maximum target internal pressure and the pressure setpoint was inverted to return to the initial pressure. Hysterical behaviour of the bubbles was highlighted as they did not regain their initial shape because of yield stress. We show that the rheological behaviour is related to the internal pressure, bubble geometry and yield stress in quasi-static conditions. A modification of the Laplace law depending on the yield stress of the fluid and bubble sphericity was proposed and validated.  相似文献   

12.
 A one-dimensional model is presented, which describes the transient two-phase flow in thin pipes during fast pressure drops and degassing by use of Eulerian and Lagrangian systems. The reduction in dimension is obtained by introduction of a geometry model for bubbly and slug flow regimes. The complete model includes the transient two-phase flow, bubble formation and bubble growth. The flow model predicts rising velocities of bubbles and plugs in arbitrary inclined highly accurate pipes. The mass transfer (diffusion) of the dissolved phase is calculated by the bubble growth model. The quality of the model was examined by simulation of experimental series, whereby water was depressurised from the saturation pressure of the dissolved gas mixture (air), by variation of saturation pressure, pressure gradient and pipe geometry. The results of numerical simulation fit the experimental data well. Received on 17 January 2000  相似文献   

13.
The propagation of one-dimensional perturbations in a viscoelastic relaxing liquid containing gas bubbles is investigated within the framework of the homogeneous model of the medium when the wavelength of the perturbation is much larger than the distance between the bubbles and the bubble radius. The evolution of stationary and nonstationary waves is investigated analytically and with the use of numerical integration; shock waves are also investigated. The results are compared with the behavior of perturbation waves in a Newtonian liquid with gaseous inclusions. The models of the gas-liquid medium [1, 2] are generalized to the case when the liquid phase is a viscoelastic liquid, for example, a weak aqueous solution of polymers. The propagation of longwave perturbations of finite amplitude in such a mixture is investigated using the technique developed in [3].  相似文献   

14.
In this paper, the effect of a novel rotating distributor for fluidized beds on the bubble size is studied. The distributor is a perforated plate that rotates around the vertical axis of the column.The formation of the bubbles on the rotating distributor is theoretically analyzed. The pierced length of the bubbles ascending in the bed were measured using optical probes. The probability distribution of bubble diameter was inferred from these experimental measurements using the maximum entropy method. The radial profile of the bubble diameter is presented for the static and rotating configurations at different gas velocities. The frequency of bubble passage and the distribution of bubbles in the cross section of the bed are also reported. Results were finally shown for different heights above the distributor.A radial decrease in the bubble size when the distributor rotates is found. The bubble growth with the bed height is also lower in the rotating case.  相似文献   

15.
16.
For a theoretical derivation of bubble coalescence conditions, nonlinear forced oscillations of two closely spaced spherical bubbles subjected to the action of a periodic external pressure field are considered. The equations, asymptotic with respect to a small distance between the bubble surfaces, are derived to describe the approach of the bubbles under the action of (i) the Bjerknes attraction force averaged over the oscillation period and (ii) the viscous drag. It is shown that due to nonlinear interaction of the viscous drag with the radial and translational oscillations of the bubbles a unidirectional repulsive force is generated, which prevents the approach of the bubbles. The coalescence of the bubbles is possible when the nondimensional parameter combined from the amplitude and frequency of the external pressure field, the bubble radius, and the fluid viscosity is greater than a certain critical value. The obtained coalescence condition is qualitatively confirmed by experiments.  相似文献   

17.
We present a method for the simulation of two-phase flows which can be applied to problems characterised by the presence of up to several hundreds of gas bubbles. The bubble model is kept simple, requiring only six parameters to describe the shape of a single bubble. The model is coupled to a conventional time discrete finite-volume scheme for the solution of the Navier–Stokes equations by the density field which is calculated on basis of the information on the positions and the shapes of the bubbles before each time step. The motion of the bubbles is in turn calculated from an analysis of the computed flow field. Systematical errors due to simplifications are eliminated by the introduction of correction factors. For a selection of fluid dynamical problems, the results of simulations using the method are compared to experimental data. Good quantitative agreement could be found.  相似文献   

18.
Equations which describe the evolution of the bubble spectrum in the process of cavitational fragmentation by a shock wave reflected from a free liquid surface are formulated. As an example, the effect of artificial saturation of the initial fluid with large bubbles on the dispersity of a liquid-drop gas suspension focused by dispersion is investigated.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.3, pp. 51–58, May–June, 1992.  相似文献   

19.
Bubble columns are widely used in the chemical industry and biotechnology. Flow and turbulence in such an apparatus are induced by the bubble rise, and the bubble behaviour is strongly affected by swarm effects (i.e. the interaction between bubbles). For analysing the bubble swarm behaviour and simultaneously evaluating the flow structure and bubble-induced turbulence, a bubble column of 140 mm diameter and a height of 650 mm or 1,400 mm (initial water level) were considered. The bubble column was aerated with relatively fine bubbles having a mean size between about 0.5 and 4.0 mm. The gas hold-up was varied in the range between 0.5 and 19%. A two-phase pulsed-light velocimetry (PLV) system was developed to evaluate instantaneous flow fields of both rising bubbles and the continuous phase. The measurement of the liquid velocities in the bubble swarm was achieved by adding fluorescing seed particles. Images of bubbles and fluorescing tracer particles were acquired by two CCD cameras. Hence, the images from tracers and bubbles were easily separated by optical interference filters with a bandwidth corresponding to the emitting wavelength of the fluorescing tracer particles and the wavelength of the applied Nd-YAG pulsed laser, respectively. To improve the phase separation of the system, the CCD cameras were additionally placed in a non-perpendicular arrangement with respect to the light sheet. The acquired images were evaluated with the minimum-quadratic-difference algorithm. The potential of this technique for the analysis of bubbly flows with higher void fraction was explored. In order to obtain averaged velocity maps of bubble and fluid within the entire column, about 1,000 image pairs were recorded and evaluated for each phase. In addition, turbulence intensities of the fluid were deduced from the measurements. The turbulence properties were used to characterise bubble-induced turbulence for various bubble mean diameters and gas hold-ups. Moreover, the determination of the average bubble slip velocity within the bubble swarm was possible.  相似文献   

20.
The influence of the fluid and gas flow rate parameters on the diameter of bubbles separating from a single capillary immersed in a fluid flow in a channel of 1×1 cm cross-section is investigated. The dependences of the mean bubble diameter on the fluid velocity and the gas flow rate through the capillary are obtained. The frequency of the bubble detachment from the capillary is estimated. It is shown that the histogram of the bubble size distribution changes qualitatively with the excess of a certain critical bubble detachment frequency, which is associated with the transition from the discrete to jet mode of detachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号