首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用球-盘点接触光干涉油膜与摩擦力测量装置观察了滑滚条件下接触区润滑状态与润滑剂回填效应. 结果显示,在定量供油和恒定滑滚比下,不同供油量使接触区呈现出从边界润滑状态向弹流润滑状态的不同转化趋势,非接触回填机制是其诱因;在恒定卷吸速度下,随着滑滚比从负值向正值变化,入口距离减小、乏油宽度增加,接触区两表面润滑剂回填时间的差别是其主要原因;完全乏油条件下,接触回填机制对局部润滑油膜建立发挥明显作用.   相似文献   

2.
弹性流体动力润滑状态通常出现在机械高副零部件的点/线接触部位,如齿轮、轴承和蜗轮蜗杆等. 宏观上点/线接触在介观层面表现为两粗糙表面的接触,在微观层面上则又表现为微凸体间的接触. 由于在中/重载荷作用下,粗糙表面上的微凸体发生接触后会产生弹塑性/塑性变形,从而使得两粗糙表面的弹流润滑接触转变为弹塑性流体动力润滑接触. 此外,界面的接触刚度决定了机械装备的整机刚度. 为了精确获得弹性流体动力润滑状态下界面法向接触刚度及其主要影响因素,基于界面的法向接触刚度由固体接触刚度和润滑油膜刚度两部分构成的思想,根据固体弹塑性理论和流体动力学理论,分别对界面间微凸体侧接触及部分膜流体动力润滑进行分析,从微观入手揭示双粗糙表面弹塑性流体动力润滑接触机理,进而建立考虑微凸体侧接触弹塑性变形的流体动力润滑界面法向接触刚度模型. 通过仿真分析,揭示了法向载荷、卷吸速度、表面粗糙度及润滑介质特性等因素对润滑界面法向接触刚度的影响规律. 研究表明:在相同速度、粗糙度及润滑油黏度的工况下,固体接触刚度和油膜接触刚度均随着法向接触载荷的增加呈非线性增大;在相同载荷、速度及润滑油黏度的工况下,接触表面粗糙度越大,表面形貌对于润滑状态的影响较强,固体接触刚度占界面总刚度的主要部分,界面主要由固体承载;在相同载荷、粗糙度及润滑油黏度工况下,随着卷吸速度的增大,固体接触刚度逐渐减小,油膜刚度占界面总刚度的主要部分;在相同载荷、粗糙度及速度工况下,随着润滑油黏度的增大,油膜刚度基本保持不变,固体接触刚度基本不受润滑油黏度的影响. 通过理论建模准确获得单位面积弹塑性流体动力润滑结合面法向接触刚度,对改善机械装备动态性能、提高机械装备的可靠性具有重要的理论和实际意义.   相似文献   

3.
基于球环点接触高速膜厚测量系统采用PAO6基础润滑油进行了高速弹流润滑试验研究,采用玻璃环转动带动钢球旋转的牵引方式,模拟轴承外圈与钢球的润滑接触状态.试验结果显示高速下试验测得的中心膜厚值严重偏离经典弹流理论的预测.基于高速热弹流润滑模型分析了高速下膜厚降低并偏离经典弹流理论预测的原因,计算结果表明钢球与玻璃环之间的运动不是纯滚动,存在滑滚比,并通过测量钢球转速加以验证;进而结合数值计算结果中接触区温度的变化,探讨了高速弹流润滑膜厚行为机理,高速时较大滑滚比的存在使得卷吸速度远低于纯滚动理论值是膜厚下降的主要原因,由此而产生的热效应使得润滑油黏度下降,膜厚进一步减小.  相似文献   

4.
非牛顿体通用模型线接触弹流润滑的数值分析   总被引:3,自引:3,他引:0  
基于润滑剂在弹流润滑状态下表现为非牛顿体特性,根据弹流润滑理论,采用一种新的非牛顿体流变模型,建立了适用于非牛顿体的修正Reynolds方程,进行了等温弹流润滑的数值计算,并在等温解的基础地温度场分析。数值分析结果表明,由于滑滚比和模型参数对剪应力影响较大,因而在滑滚比和模型参数较大时应进行热弹流计算。通过温度场分析可证明:非牛顿体通过模型可用于等温弹流润滑和热弹流润滑计算。  相似文献   

5.
白少先  黄平 《摩擦学学报》2003,23(6):537-540
针对二阶流体薄膜润滑在润滑方程中引入二阶流体和弹性变形,在考虑薄膜润滑状态下的非牛顿性和类固体性的基础上,建立了薄膜润滑的粘变数学模型,并针对线接触弹流薄膜润滑进行了数值计算.结果表明,在相同载荷下基于粘变模型计算得到的膜厚同牛顿流体相应的膜厚相比大得多,而粘变薄膜厚度同速度的相关性比牛顿流体的小得多,且粘变薄膜能够承受更大的载荷;所建立的粘变模型适用于薄膜润滑的理论计算.  相似文献   

6.
流体动力润滑油膜破裂的热力学失稳机理   总被引:1,自引:0,他引:1  
分析了流体动力学润滑过程中的热量传递及对润滑剂流变特性的影响,得出了流体动力润滑油膜发生热力学失稳的条件,建立了描述润滑剂温度非牛顿效应的本构方程数值计算结果表明,由于温度的影响,流体动力润滑油膜存在最大承载能力;在临界状态,微小的扰动将会引起油膜失稳而丧失承载能力。初步揭示了流体动力学力润滑膜破失效的内在力学机制。  相似文献   

7.
自旋对椭圆接触热弹流润滑的影响   总被引:3,自引:2,他引:1  
郇艳  杨沛然 《摩擦学学报》2009,29(6):612-617
通过数值求解研究了自旋运动对热弹流润滑的影响,分析了不同载荷下自旋对压力?最小油膜厚度?油膜中层温度的影响以及滑滚比?角速度对油膜中层温度的影响.结果表明:载荷越重时油膜压力越大,油膜整体厚度越小,同时油膜顶部倾斜度越大,关于y=0截面油膜厚度曲线的不对称性越明显.自旋存在使得滑滚比不再是常数,而滑滚比越大之处温升越大,因此润滑油膜的温度分布不再关于y=0截面对称;另外,角速度越高则油膜中层温升越大,而出口峰值越靠近接触中心.  相似文献   

8.
针对对数型凸度滚子,在自制的滚子接触光弹流试验装置上开展了摆动工况弹流的实验研究.在2种不同摆动频率下,测量了弹流润滑油膜厚度和形状.结果表明:在一定载荷范围内,对数凸型滚子弹流润滑状态下的油膜厚度沿轴向呈均匀分布.摆动工况下润滑油膜的变化受到楔形效应和挤压效应的共同作用;低频时卷吸速度变化较小,以挤压效应为主;高频时卷吸速度变化较大,楔形效应增强.在卷吸速度为零时,油膜被封入接触区内,高频时形成的凹陷更为明显.  相似文献   

9.
油膜厚度预测在评估弹流润滑(EHL)下角接触球轴承的性能和耐久性方面发挥着重要的作用. 耦合拟静力学理论和自旋下椭圆接触弹流模型,以干接触角接触球轴承拟静力学分析方法为基础,建立了定压和定位预紧方式下考虑弹流润滑和钢球自旋运动的角接触球轴承的拟静力学分析模型. 采用快速傅里叶变换(FFT)计算椭圆接触的弹性变形,运用Gauss-Seidel迭代方法求解Reynolds方程,得到自旋弹流模型的完全数值解,将其代入轴承拟静力学模型中迭代,得到轴承内部接触载荷、三维接触压力及三维膜厚分布. 对采用不同预紧方式的SKF7210型角接触球轴承进行分析,结果表明:富油润滑下,当轴承转速从0增大到15 000 r/min时,定压预紧时内圈轴向位移减小17.83%,而定位预紧时内圈承受的轴向载荷增大23.17%;定压预紧方式下球与内外滚道间膜厚均略大于定位预紧. 此外,不同预紧方式下,外圈上的中心膜厚大于内圈10%. 与干接触相比,定压下考虑弹流润滑内圈上接触载荷略大0.64%.   相似文献   

10.
杨沛然  温诗铸 《力学学报》1992,24(4):404-410
本文应用数值方法分析了周期性动载荷对线接触热弹性流体动力润滑的影响,使用Ree-Eyring流变模型来描绘润滑剂的非牛顿性质。结果显示,周期性动载可以阻滞油膜的变化并在一定程度上增加膜厚。频率很高的动载可以显著改变压力和温度的分布规律,但润滑剂的非牛顿性质在中轻载条件下并不重要。  相似文献   

11.
针对滚动体-滚道摩擦副,建立了点接触非稳态弹流润滑数学模型,利用FFT技术和半解析算法数值求解了接触体在自由振动过程中油膜压力和膜厚的变化,同时结合有阻尼系统的自由振动模型,给出了预测点接触摩擦副动力特性的方法,在较宽的载荷和速度范围内分析了接触副的等效刚度系数和阻尼系数的变化.结果表明:根据接触副的实际工作载荷和速度所确定的无量纲自然频率来进行非稳态弹流的计算所得到的膜厚结果更接近实验值;在接触体的振动过程中油膜的压力和厚度在平衡位置附近上下波动,且由于润滑油膜的作用接触体的振动幅值逐渐减小;刚度系数随载荷参数的增加而增加,随速度参数的增加而减小,而阻尼系数的变化规律较复杂,在不同的载荷和速度范围内呈现出不同的变化趋势.  相似文献   

12.
研究了弹流反常温度场的形成机理及影响因素,指出入口温升是压缩功发热和逆流剪切热所致,而出口局部低温是负压缩功吸热的结果,出口温度的再次微幅上升则是压缩功消失后剪切热作用的结果.研究结果表明,入口温升随载荷的增加而增大,随卷吸速度的增加显著升高而几乎与滑滚比无关;在高速小滑滚比工况下,接触区的最高温度有可能出现在入口位置;入口温升增加了材料在工作中经受高温的次数,对其接触疲劳寿命有不利影响;在保证润滑性能的前提下,适当减少供油量可以减小逆流,从而降低入口温升。  相似文献   

13.
大部分工程实际粗糙表面符合非高斯分布,并对齿轮接触副润滑特性有重要影响.将渐开线齿轮啮合过程中齿面接触等效为三维无限长线接触,建立了一个可分析直齿轮和斜齿轮的混合弹流润滑计算模型;采用基于快速傅里叶变换的数值仿真方法生成给定参数的非高斯粗糙表面;运用该模型对直齿轮和斜齿轮啮合过程进行分析,求得不同表面粗糙度特征齿轮在各个啮合点的油膜厚度、接触区载荷以及接触区比例的情况.结果表明:对于标准差相等的非高斯粗糙表面,偏度值对齿轮润滑状况的影响与工况紧密相关,在润滑良好的条件下,偏度值越小润滑状况越优;润滑恶劣的条件下,偏度值越大润滑状况越优;而在各种工况下,峰度值对齿轮润滑状况的影响都表现出峰度值越大润滑状况越优的特点.  相似文献   

14.
在自制的新型膜厚测量仪上,测量4010航空油在不同接触压力、温度和卷吸速度下的干涉图像,分析接触区的润滑特性。结果表明:在低温高速区主要表现为弹流润滑,中心膜厚与接触压力呈负相关;而在低温低速、高温区主要表现为薄膜润滑,中心膜厚受接触压力的影响较小。在弹流润滑区内高接触压力下油膜形状呈平坦状分布,而薄膜润滑区内油膜形状总体上比较平滑。随着载荷的增加,弹流润滑区内由Hamrock-Dowson理论算得的膜厚值和实测值逐渐偏离,理论公式中卷吸速度和载荷的指数需要调整;而薄膜润滑区的膜厚值基本上保持平稳。  相似文献   

15.
Based on the couple-stress theory, the elastohydrodynamic lubrication(EHL)contact is analyzed with a consideration of the size effect. The lubricant between the contact surface of a homogeneous coated half-plane and a rigid punch is supposed to be the non-Newtonian fluid. The density and viscosity of the lubricant are dependent on fluid pressure. Distributions of film thickness, in-plane stress, and fluid pressure are calculated by solving the nonlinear fluid-solid coupled equations with an iterative method. The effects of the punch radius, size parameter, coating thickness, slide/roll ratio, entraining velocity, resultant normal load, and stiffness ratio on lubricant film thickness, in-plane stress, and fluid pressure are investigated. The results demonstrate that fluid pressure and film thickness are obviously dependent on the size parameter, stiffness ratio, and coating thickness.  相似文献   

16.
谐波减速器柔性轴承混合润滑分析   总被引:1,自引:0,他引:1  
以谐波减速器FB815型柔性球轴承为研究对象,基于赫兹接触理论和弹流润滑理论,建立了柔性球轴承的混合润滑数学模型,并对滚珠和内圈滚道的接触区进行了摩擦学性能分析.通过研究承载区滚珠在额定工况下的油膜厚度、压力、膜厚比等润滑参数,得到了危险点分布位置,并研究了载荷、转速、温度等因素对危险点润滑性能的影响.研究结果表明:在一定范围内,适当提高转速和降低温度能够有效减小疲劳点蚀,提高柔性轴承的可靠性和使用寿命.  相似文献   

17.
弹流润滑与薄膜润滑转化关系的研究   总被引:12,自引:8,他引:4  
采用NGY-2型纳米级膜厚测量仪,研究了润滑膜厚度与各工况因素之间的关系,分析了薄膜润滑的机理,探讨了膜厚、速度、润滑油粘度等各因素对弹流润滑与薄膜润滑之间转化的影响,建立了转化临界膜厚值与润滑剂表观粘度的关系。  相似文献   

18.
考虑滚道表面油层分布的滚动轴承润滑分析   总被引:3,自引:0,他引:3  
研究表明供油量对弹流润滑性能产生显著影响.滚动轴承中由于离心力和滚动体的反复滚压,滚道表面上的润滑剂呈现出非均匀分布的特点.大多数润滑剂被推挤到滚道的两侧,致使接触区的入口间隙不能被完全充满,导致乏油润滑,滚动体与滚道间接触压力接近于赫兹压力分布,膜厚较全膜润滑有明显的减小.本文基于润滑剂的流量连续建立滚道表面油层厚度分布模型,考虑润滑接触压力的影响,计算滚道上的侧流量以预测轴承滚道上补给油层厚度及形状随时间的变化规律;进而以此作为滚动体和滚道接触区的入口油层厚度,采用统一Reynolds方程法数值模拟计算每个时刻轴承滚道与滚动体之间的润滑油膜厚度,压力分布等参数,分析轴承在点接触乏油条件下运行的润滑性能.  相似文献   

19.
为探究动载荷作用下变位齿轮系统的热弹流润滑特性,综合考虑齿轮变位和时变啮合刚度的影响,基于动力学理论,建立了齿轮的六自由度摩擦动力学模型,分析振动与静载荷作用下变位齿轮系统的热弹流润滑特性. 研究表明:与其他传动类型相比,正传动齿轮系统的润滑效果最佳,轮齿间可以形成较厚的润滑油膜,轮齿间的摩擦系数、油膜的最高温升最小,并且,随着两齿轮变位系数和的增大,润滑状况不断得到改善,热胶合承载能力增强;变位系数增加使齿轮系统的刚度增大,但同时降低了油膜的刚度.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号