首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of location of the lateral boundaries, of the computational domain, on the critical parameters for the instability of the flow past a circular cylinder is investigated. Linear stability analysis of the governing equations for incompressible flows is carried out via a stabilized finite element method to predict the primary instability of the wake. The generalized eigenvalue problem resulting from the finite element discretization of the equations is solved using a subspace iteration method to get the most unstable eigenmode. Computations are carried out for a large range of blockage, 0.005?D/H ?0.125, where D is the diameter of the cylinder and H is the lateral width of the domain. A non‐monotonic variation of the critical Re with the blockage is observed. It is found that as the blockage increases, the critical Re for the onset of the instability first decreases and then increases. However, a monotonic increase in the non‐dimensional shedding frequency at the onset of instability, with increase in blockage, is observed. The increased blockage damps out the low‐frequency modes giving way to higher frequency modes. The blockage is found to play an important role in the scatter in the data for the non‐dimensional vortex shedding frequency at the onset of the instability, from various researchers in the past. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
We have conducted the linear stability analysis of flow in a channel with periodically grooved parts by using the spectral element method. The channel is composed of parallel plates with rectangular grooves on one side in a streamwise direction. The flow field is assumed to be two‐dimensional and fully developed. At a relatively small Reynolds number, the flow is in a steady‐state, whereas a self‐sustained oscillatory flow occurs at a critical Reynolds number as a result of Hopf bifurcation due to an oscillatory instability mode. In order to evaluate the critical Reynolds number, the linear stability theory is applied to the complex laminar flow in the periodically grooved channel by constituting the generalized eigenvalue problem of matrix form using a penalty‐function method. The critical Reynolds number can be determined by the sign of a linear growth rate of the eigenvalues. It is found that the bifurcation occurs due to the oscillatory instability mode which has a period two times as long as the channel period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes the finite difference numerical procedure for solving velocity–vorticity form of the Navier–Stokes equations in three dimensions. The velocity Poisson equations are made parabolic using the false‐transient technique and are solved along with the vorticity transport equations. The parabolic velocity Poisson equations are advanced in time using the alternating direction implicit (ADI) procedure and are solved along with the continuity equation for velocities, thus ensuring a divergence‐free velocity field. The vorticity transport equations in conservative form are solved using the second‐order accurate Adams–Bashforth central difference scheme in order to assure divergence‐free vorticity field in three dimensions. The velocity and vorticity Cartesian components are discretized using a central difference scheme on a staggered grid for accuracy reasons. The application of the ADI procedure for the parabolic velocity Poisson equations along with the continuity equation results in diagonally dominant tri‐diagonal matrix equations. Thus the explicit method for the vorticity equations and the tri‐diagonal matrix algorithm for the Poisson equations combine to give a simplified numerical scheme for solving three‐dimensional problems, which otherwise requires enormous computational effort. For three‐dimensional‐driven cavity flow predictions, the present method is found to be efficient and accurate for the Reynolds number range 100?Re?2000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
A three‐dimensional numerical model is developed to analyze free surface flows and water impact problems. The flow of an incompressible viscous fluid is solved using the unsteady Navier–Stokes equations. Pseudo‐time derivatives are introduced into the equations to improve computational efficiency. The interface between the two phases is tracked using a volume‐of‐fluid interface tracking algorithm developed in a generalized curvilinear coordinate system. The accuracy of the volume‐of‐fluid method is first evaluated by the multiple numerical benchmark tests, including two‐dimensional and three‐dimensional deformation cases on curvilinear grids. The performance and capability of the numerical model for water impact problems are demonstrated by simulations of water entries of the free‐falling hemisphere and cone, based on comparisons of water impact loadings, velocities, and penetrations of the body with experimental data. For further validation, computations of the dam‐break flows are presented, based on an analysis of the wave front propagation, water level, and the dynamic pressure impact of the waves on the downstream walls, on a specific container, and on a tall structure. Extensive comparisons between the obtained solutions, the experimental data, and the results of other numerical simulations in the literature are presented and show a good agreement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
轴向均布载荷下压杆稳定问题的DQ解   总被引:1,自引:1,他引:1  
叙述了微分求积法(differential quadrature method)的一般方法,研究用微分求积法求解在均布轴向载荷下细长杆的稳定问题.通过Newton-Raphson法求解非线性方程组,以及对问题进行线性假设后求解广义特征值方程,得到了精度很高的后屈曲挠度数值和临界载荷数值.与解析解和其他近似解相比,微分求积法具有较高的精度和简便性.  相似文献   

7.
分析了轴向流作用下两端简支和固支叠层板的稳定性。基于势流理论建立轴向流作用下叠层板的流固耦合系统连续型运动方程,基于有限差分法建立了流场网格和结构网格统一的离散化格式,流场势函数用板的横向振动位移变量来表示,得到关于叠层板的横向振动位移变量的控制方程。求解控制方程的广义特征值,计算分析结果表明,两端简支和两端固支模型发生屈曲失稳,且得到了屈曲失稳临界速度与叠层板的层数和无量纲板间距的关系。此外,轴向流作用下叠层板的一阶模态并不是叠层板的同相弯曲模态。  相似文献   

8.
In this paper, we describe a new method for the three‐dimensional steady incompressible Navier–Stokes equations, which is called the dimension split method (DSM). The basic idea of DSM is that the three‐dimensional space is split up into a cluster of two‐dimensional manifolds and then the three‐dimensional solution is approximated by the solutions on these two‐dimensional manifolds. Through introducing some technologies, such as SUPG stabilization, multigrid method, and such, we firstly make DSM feasible in the computation of real flow. Because of split property of DSM, all computation is carried out on these two‐dimensional manifolds, namely, a series of two‐dimensional problems only need to be solved in the computation of three‐dimensional problem, which greatly reduces the difficulty and the computational cost in the mesh generation. Moreover, these two‐dimensional problems can be computed simultaneously and a coarse‐grained parallel algorithm would be constructed, whereas the two‐dimensional manifold is considered as the computation unit. In the last, we explore the behavior and the accuracy of the proposed method in two numerical examples. Firstly, error estimates, performance of multigrid method, and parallel algorithm are well‐demonstrated by the known analytical solution case. Secondly, the computations of three‐dimensional lid‐driven cavity flows with different Reynolds numbers are compared with other numerical simulations. Results show that the present implementation is able to exhibit good stability and accuracy properties for real flows. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper demonstrates that a numerical method based on the generalized simplified marker and cell (GENSMAC) flow solver and Youngs' volume of fluid (Y‐VOF) surface‐tracking technique is an effective tool for studying the basic mechanics of hydraulic engineering problems with multiple free surfaces and non‐hydrostatic pressure distributions. Two‐dimensional flow equations in a vertical plane are solved numerically for this purpose. The numerical results are compared with experimental data and earlier numerical results based on a higher‐order depth‐averaged flow model available in the literature. Two classical problems, (i) flow in a free overfall and (ii) flow past a floor slot, are considered. The numerical results correspond very well with the experimental data for both sub‐critical and supercritical flows. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with producing highly accurate solution and bifurcation structure using the pseudo‐spectral method for the two‐dimensional pressure‐driven flow through a horizontal duct of a square cross‐section that is heated by a uniform flux in the axial direction with a uniform temperature on the periphery. Two approaches are presented. In one approach, the streamwise vorticity, streamwise momentum and energy equations are solved for the stream function, axial velocity, and temperature. In the second approach, the streamwise vorticity and a combination of the energy and momentum equations are solved for stream function and temperature only. While the second approach solves less number of equations than the first approach, a grid sensitivity analysis has shown no distinct advantage of one method over the other. The overall solution structure composed of two symmetric and four asymmetric branches in the range of Grashof number (Gr) of 0–2 × 106 for a Prandtl number (Pr) of 0.73 has been computed using the first approach. The computed structure is comparable to that found by Nandakumar and Weinitschke (1991) using a finite difference scheme for Grashof numbers in the range of 0–1×106. The stability properties of some solution branches; however, are different. In particular, the two‐cell structure of the isolated symmetric branch that has been found to be unstable by the study of Nandakumar and Weinitschke is found to be stable by the current study. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows in a wide range of Reynolds numbers. A fourth‐order compact finite‐difference scheme is utilized to accurately discretize the spatial derivative terms of the governing equations, and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for the computations of the steady and unsteady incompressible viscous flows from very low to high Reynolds numbers is investigated through the simulation of different 2‐dimensional benchmark problems, and the results obtained are compared with the existing analytical, numerical, and experimental data. A sensitivity analysis is also performed to evaluate the effects of the size of the computational domain and other numerical parameters on the accuracy and performance of the solution algorithm. The present solution procedure is also extended to 3 dimensions and applied for computing the incompressible flow over a sphere. Indications are that the application of the preconditioning in the solution algorithm together with the high‐order discretization method in the generalized curvilinear coordinates provides an accurate and robust solution method for simulating the incompressible flows over practical geometries in a wide range of Reynolds numbers including the creeping flows.  相似文献   

12.
A methodology for computing three‐dimensional interaction between waves and fixed bodies is developed based on a fully non‐linear potential flow theory. The associated boundary value problem is solved using a finite element method (FEM). A recovery technique has been implemented to improve the FEM solution. The velocity is calculated by a numerical differentiation technique. The corresponding algebraic equations are solved by the conjugate gradient method with a symmetric successive overrelaxation (SSOR) preconditioner. The radiation condition at a truncated boundary is imposed based on the combination of a damping zone and the Sommerfeld condition. This paper (Part 1) focuses on the technical procedure, while Part 2 [Finite element simulation of fully non‐linear interaction between vertical cylinders and steep waves. Part 2. Numerical results and validation. International Journal for Numerical Methods in Fluids 2001] gives detailed numerical results, including validation, for the cases of steep waves interacting with one or two vertical cylinders. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
14.
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high‐order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier–Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity–velocity formulation for a two‐dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high‐order compact and non‐compact finite‐differences from fourth‐order to sixth‐order of accuracy. The other scheme used spectral methods instead of finite‐difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed‐order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
This work deals with the development of a fast three‐dimensional numerical strategy for the simulation of viscous fluid flow in complex mixing systems. The proposed method is based on a distributed Lagrange multiplier fictitious domain method and the use of the low‐cost MINI finite element. Contrary to the previous fictitious domain method developed by our group a few years ago, the underlying partial differential equations are solved here in a coupled manner using a consistent penalty technique. The method is discussed in detail and its precision is assessed by means of experimental data in the case of an agitated vessel. A comparison made with our existing fictitious domain method and its decoupled Uzawa‐based solver clearly shows the advantages of resorting to the MINI finite element and fully coupled solution strategy. The new technique is then applied to the simulation of the flow of a Newtonian viscous fluid in a three‐blade planetary mixer in the context of the production of solid propellants. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
用Level set方法配合Runge-Kutta discontinuous Galerkin (RKDG)有限元方法求解流体与刚体耦合问题。用RKDG有限元方法求解欧拉方程,通过求解Level set方程对界面进行追踪,并用推广的Ghost fluid方法对流刚界面进行处理。数值实验表明,该方法具有较高的分辨率。由于该方法不需要对移动网格进行处理,因此可以处理任意形状的拓扑问题,并且很容易推广到三维。  相似文献   

17.
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A computational fluid dynamics (CFD) analysis was conducted to study the unsteady aerodynamics of a virtual flying bumblebee during hovering flight. The integrated geometry of bumblebee was established to define the shape of a three‐dimensional virtual bumblebee model with beating its wings, accurately mimicking the three‐dimensional movements of wings during hovering flight. The kinematics data of wings documented from the measurement to the bumblebee in normal hovering flight aided by the high‐speed video. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow‐structure information. The CFD analysis has established an overall understanding of the viscous and unsteady flow around the virtual flying bumblebee and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. A coherent leading‐edge vortex with axial flow and the attached wingtip vortex and trailing edge vortex were detected. The leading edge vortex, wing tip vortex and trailing edge vortex, which caused by the pressure difference between the upper and the lower surface of wings. The axial flow, which include the spanwise flow and chordwise flow, is derived from the spanwise pressure gradient and chordwise pressure gradient, will stabilize the vortex and gives it a characteristic spiral conical shape. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
This investigation pursues the study of Hall and ion‐slip effects on steady three‐dimensional flow of an incompressible second grade fluid. The partial differential equations are reduced to ordinary differential equations by using similarity variables. The resulting problems are solved by employing homotopy analysis method (HAM). The convergence of derived solutions is ensured. The influence of different physical parameters on the dimensionless velocities is examined by sketching plots. Variation of skin friction coefficients for different involved parameters is seen through tabulated values. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The effect of wavelength and relative velocity on the disturbed interface of two‐phase stratified regime is modeled and discussed. To analyze the stability, a small perturbation is imposed on the interface. Growth or decline of the disturbed wave, relative velocity, and surface tension with respect to time will be discussed numerically. Newly developed scheme applied to a two‐dimensional flow field and the governing Navier–Stokes equations in laminar regime are solved. Finite volume method together with non‐staggered curvilinear grid is a very effective approach to capture interface shape with time. Because of the interface shape, for any time advancement, a new grid is performed separately on each stratified field, liquid, and gas regime. The results are compared with the analytical characteristics method and one‐dimensional modeling. This comparison shows that solving the momentum equation including viscosity term leads to physically more realistic results. In addition, the newly developed method is capable of predicting two‐phase stratified flow behavior more precisely than one‐dimensional modeling. It was perceived that the surface tension has an inevitable role in dissipation of interface instability and convergence of the two‐phase flow model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号