首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boiling/evaporation heat transfer in a microchannel with pin fin structure was performed with water as the working fluid. Simultaneous measurements of various parameters were performed. The chip wall temperatures were measured by a high spatial-time resolution IR image system, having a sensitivity of 0.02 °C. The flow pattern variations synchronously changed wall temperatures due to ultra-small Bi number. The wavelet decomposition method successfully identified the noise signal and decoupled various temperature oscillations with different amplitudes and frequencies. Three types of temperature oscillations were identified according to heat flux q and mass flux G. The first type of oscillation occurred at q/G < 0.62 kJ/kg. The approximation coefficient of wavelet decomposition decided the dominant cycle period which was ∼3 times of the fluid residence time in the microchannel, behaving the density wave oscillation characteristic. The detail coefficients of wavelet decomposition decided the dominant cycle period, which matched the flow pattern transition determined value well, representing the flow pattern transition induced oscillation. For the second type of oscillation, the wavelet decomposition decoupled the three oscillation mechanisms. The pressure drop oscillation caused the temperature oscillation amplitudes of 5–10 °C and cycle periods of 10–15 s. The density wave oscillation and flow pattern transition induced oscillation are embedded with both the pressure rise and decrease stages of the pressure drop oscillation. The third type of oscillation happened at q/G > 1.13 kJ/kg, having the density wave oscillation coupled with the varied liquid film evaporation induced oscillation. The liquid island, retention bubble induced nucleation sites and cone-shape two-phase developing region are unique features of microchannel boiling with pin fin structure. This study illustrated that pressure drop oscillation and density wave oscillation, usually happened in large size channels, also take place in microchannels. The flow pattern transition and varied liquid film evaporation induced oscillations are specific to microchannel boiling/evaporation flow.  相似文献   

2.
In this work, a new method is proposed to determine the two-phase flow regime based on the capacitance trace of the flow. The experimental data set contains 123 capacitance traces measured for a horizontal tube with an inner diameter of 8 mm. The tested refrigerant is R134a. The mass flux is varied between 200 and 500 kg/m2 s and the vapour quality x is varied between 0 and 1. For each capacitance signal the wavelet variance is estimated based on the maximum overlap wavelet transform of the signal. The used wavelet function is a D8 wavelet of the Daubechies family. A feature space is generated based on the wavelet variance values associated with frequencies below 100 Hz. Principal component analysis and linear discriminant analysis are subsequently applied to this raw feature space, after which the Fuzzy c-means clustering algorithm is used to divide the feature space into clusters corresponding to different flow regimes. The resulting flow regime assignment shows a good agreement with a visual classification of the data set based on flow visualisations. Finally, the classification was performed based on variable training data to show the robustness of the method.  相似文献   

3.
The paper deals with the topological sensitivity of free, unsupported, statically determinate plane trusses whose horizontal and vertical members form two horizontal layers of square cells and two or more vertical layers. The topology of a truss is decomposed into a form vector – the placement of cells containing diagonal members – and a binary vector describing the slopes of the diagonals. The construction of complete form and slope spaces is provided for any number of vertical layers. Using exhaustive search, forms with minimum and maximum sensitivity to slope change are found for trusses with 2 × 2 through 2 × 8 layers under worst static load condition, represented by the lowest eigenvalue of the least-squares equilibrium matrix. Typical features of the least and most sensitive forms and associated loads and internal forces are shown. Changes of absolute and relative topological sensitivities with increasing number of vertical layers are discussed.  相似文献   

4.
Finite element analysis, of regular Kelvin foam models with all the material in uniform-thickness faces, was used to predict the compressive impact response of low-density closed-cell polyethylene and polystyrene foams. Cell air compression was analysed, treating cells as surface-based fluid cavities. For a typical 1 mm cell size and 50 s?1 impact strain rate, the elastic buckling of cell faces, and pop-in shape inversion of some buckled square faces, caused a non-linear stress strain response before yield. Pairs of plastic hinges formed across hexagonal faces, then yield occurred when trios of faces concertinaed. The predicted compressive yield stresses were close to experimental data, for a range of foam densities. Air compression was the hardening mechanism for engineering strains <0.6, with face-to-face contact also contributing for strains >0.7. Predictions of lateral expansion and residual strains after impact were reasonable. There were no significant changes in the predicted behavior at a compressive strain rate of 500 s?1.  相似文献   

5.
Blast resistant glazing systems typically use laminated glass to reduce the risk of flying glass debris in the event of an explosion. Laminated glass has one or more bonded polymer interlayers to retain glass fragments upon fracture. With good design, the flexibility of the interlayer and the adhesion between layers enable laminated glass to continue to resist blast after the glass layers fracture. This gives protection from significantly higher blast loads when compared to a monolithic pane. Full-scale open-air blast tests were performed on laminated glass containing a polyvinyl butyral (PVB) interlayer. Test windows of size 1.5 m × 1.2 m were secured to robust frames using structural silicone sealant. Blast loads were produced using charge masses of 15 kg and 30 kg (TNT equivalent) at distances of 10–16 m. Deflection and shape measurements of deforming laminated glass were obtained using high-speed digital image correlation. Measurements of loading at the joint, between the laminated glass and the frame, were obtained using strain gauges. The main failure mechanisms observed were the cohesive failure of the bonded silicone joint and delamination between the glass and interlayer at the pane edge. A new finite element model of laminated glass is developed and calibrated using laboratory based tests. Predictions from this model are compared against the experimental results.  相似文献   

6.
Year-round measurements of the mass concentration and optical properties of fine aerosols (PM2.5) from June 2009 to May 2010 at an urban site in Beijing were analyzed. The annual mean values of the PM2.5 mass concentration, absorption coefficient (Ab), scattering coefficient (Sc) and single scattering albedo (SSA) at 525 nm were 67 ± 66 μg/m3, 64 ± 62 Mm−1, 360 ± 405 Mm−1 and 0.82 ± 0.09, respectively. The bulk mass absorption efficiency and scattering efficiency of the PM2.5 at 525 nm were 0.78 m2/g and 5.55 m2/g, respectively. The Ab and Sc showed a similar diurnal variation with a maximum at night and a minimum in the afternoon, whereas SSA displayed an opposite diurnal pattern. Significant increases in the Ab and Sc were observed in pollution episodes caused by the accumulation of pollutants from both local and regional sources under unfavorable weather conditions. Aerosol loadings in dust events increased by several times in the spring, which had limited effects on the Ab and Sc due to the low absorption and scattering efficiency of dust particles. The frequency of haze days was the highest in autumn because of the high aerosol absorption and scattering under unfavorable weather conditions. The daily PM2.5 concentration should be controlled to a level lower than 64 μg/m3 to prevent the occurrence of haze days according to its exponentially decreased relationship with visibility.  相似文献   

7.
In this study we conducted three-dimensional dynamic analyses of long-span box girder bridges subjected to moving loads, using four-node Lagrangian and Hermite finite elements. In finite element formulation, a 6 × 6 transformation matrix is derived to transform the system element matrices before assembly. The usual 5 degrees of freedom per node are appended with an additional drilling degree of freedom in order to fit the transformation. The numerical results show good agreement with the experimental data from an existing two-span prestressed concrete box girder bridge under travelling vehicles. Parametric studies are focused on the various effects of moving loads on the dynamic behavior for different locations on the cross-section of box girder bridges.  相似文献   

8.
This paper represents the results of an experimental study on the flow structure around a single sphere and three spheres in an equilateral-triangular arrangement. Flow field measurements were performed using a Particle Image Velocimetry (PIV) technique and dye visualization in an open water channel for a Reynolds number of Re = 5 × 103 based on the sphere diameter. The distributions and flow features at the critical locations of the contours of the velocity fluctuations, the patterns of sectional streamlines, the vorticity contours, the turbulent kinetic energy, the Reynolds stress correlations and shedding frequency are discussed. The gap ratios (G/D) of the three spheres were varied in the range of 1.0  G/D  2.5 where G was the distance between the sphere centers, and D was the sphere diameter which was taken as 30 mm. Due to the interference of the shedding shear layers and the wakes, more complex features of the flow patterns can be found in the wake region of the two downstream spheres behind the leading sphere. For G/D = 1.25, a jet-like flow around the leading sphere through the gap between the two downstream spheres occurred, which significantly enhanced the wake region. It was observed that a continuous flow development involving shearing phenomena and the interactions of shedding vortices caused a high rate of fluctuations over the whole flow field although most of the time-averaged flow patterns were almost symmetric about the two downstream spheres.  相似文献   

9.
This paper constitutes the second part of our experimental study of the thermo-mechanical behavior of superelastic NiTi shape memory alloy cables. Part I introduced the fundamental, room temperature, tensile responses of two cable designs (7 × 7 right regular lay, and 1 × 27 alternating lay). In Part II, each cable behavior is studied further by breaking down the response into the contributions of its hierarchical subcomponents. Selected wire strands were extracted from the two cable constructions, and their quasi-static tension responses were measured using the same experimental setup of Part I. Consistent with the shallow wire helix angles in the 7 × 7 construction, the force–elongation responses of the core wire, 1 × 7 core strand and full 7 × 7 cable were similar on a normalized basis, with only a slight decrease in transformation force plateaus and slight increase in plateau strains in this specimen sequence. By contrast, each successive 1 × 27 component (1 × 6 core strand, 1 × 15 strand, and full cable) included an additional outer layer of wires with a larger number of wires, greater helix radius, and deeper helix angle, so the normalized axial load responses became significantly more compliant. Each specimen in the sequence also exhibited progressively larger strains at failure, reaching 40% strain in the full 1 × 27 cable.Stress-induced phase transformations involved localized strain/temperature and front propagation in all of the tested 7 × 7 components but none of the 1 × 27 components aside from the 1 × 27 core wire. Stereo digital image correlation measurements revealed finer features within a global transformation front of the 1 × 7 core strand than the 7 × 7 cable, consisting of an staggered pattern of individual wire fronts that moved in lock-step during elongation. Although the 1 × 27 multi-layer strands exhibited temperature/strain localizations in a distributed pattern during transformations, the localizations did not propagate and their cause was traced back to contact indentations (stress concentrations) arising from the cable’s fabrication. The normalized axial torque responses of the multi-layer 1 × 27 components during transformation were distinctly non-monotonic and complex, due to the alternating handedness of the layers. Force and torque contributions of individual wire layers were deduced by subtracting 1 × 27 component responses, which helped to clarify the transformation kinetics within each layer and explain the unusual force and torque undulations seen in the 1 × 27 cable response of Part I.  相似文献   

10.
M-Band and L-Band Gold spectra between 3 and 5 keV and 8 and 13 keV, respectively, have been recorded by a photometrically calibrated crystal spectrometer. The spectra were emitted from the plasma in the laser deposition region of a ‘hot hohlraum’. This is a reduced-scale hohlraum heated with ≈9 kJ of 351 nm light in a 1 ns square pulse at the OMEGA laser. The space- and time-integrated spectra included L-Band line emission from Co-like to Ne-like gold. The three L-Band line features were identified to be the 3s  2p, 3d5/2  2p3/2 and 3d3/2  2p1/2 transitions at ≈9 keV, ≈10 keV and ≈13 keV, respectively. M-Band 5f  3d, 4d  3p, and 4p  3s transition features from Fe-like to P-like gold were also recorded between 3 and 5 keV. Modeling from the radiation–hydrodynamics code LASNEX, the collisional-radiative codes FLYCHK and SCRAM, and the atomic structure code FAC were used to model the plasma and generate simulated spectra for comparison with the recorded spectra. Through these comparisons, we have determined the average electron temperature of the emitting plasma to be between 6.0 and 6.5 keV. The electron temperatures predicted by LASNEX appear to be too large by a factor of about 1.5.  相似文献   

11.
Synthetic fiber ropes are characterized by a very complex architecture and a hierarchical structure. Considering the fiber rope architecture, to pass from fiber to rope structure behavior, two scale transition models are necessary, used in sequence: one is devoted to an assembly of a large number of twisted components (multilayered), whereas the second is suitable for a structure with a central straight core and six helical wires (1 + 6). The part I of this paper first describes the development of a model for the static behavior of a fibrous structure with a large number of twisted components. Tests were then performed on two different structures subjected to axial loads. Using the model presented here the axial stiffness of the structures has been predicted and good agreement with measured values is obtained. A companion paper (Ghoreishi, S.R. et al., in press. Analytical modeling of synthetic fiber ropes, part II: A linear elastic model for 1 + 6 fibrous structures, International Journal of Solids and Structures, doi:10.1016/j.ijsolstr.2006.08.032) presents the second model to predict the mechanical behavior of a 1 + 6 fibrous structure.  相似文献   

12.
The particle fluctuation velocities of a horizontal self-excited gas–solid two-phase pipe flow with soft fins near MPD (minimum pressure drop) air velocity are first measured by high-speed PIV in the acceleration and fully-developed regimes. Then orthogonal wavelet multi-resolution analysis and power spectrum are used to reveal multi-scale characteristics of particle fluctuation velocity. It is observed that the pronounced peaks of the spectra of axial and vertical fluctuation velocities appear in the range of low frequency near the bottom of pipe. These peaks of spectra become larger and their frequencies decrease by using fins. In the range of low frequencies (3–25 Hz), the wavelet components of the fluctuating energy of axial particle velocity make the main contribution accounting for 87% and 93% respectively for non-fin and using fins near the bottom of pipe. In the range of relatively high frequency (50–400 Hz), however, the wavelet components of using fins, accounting for about 49%, become smaller than that of non-fin, accounting for about 72%, in the suspension flow regime near the top of pipe. The skewness factor of axial particle fluctuation velocity indicates that the wavelet components follow the Gaussian probability distribution as the central frequency decreases.  相似文献   

13.
Previous experiments have shown that the distinct features of macro-martensitic band nucleation and propagation in micro-tube under tension are in three stages: the initiation and propagation of a single helical band  self-merging  propagation of the cylindrical band. In this paper, the martensitic formation and helical band propagation in the tube at different temperatures are modeled. The free energy function of the tube is formulated by introducing an equivalent method to calculate the stress and strain disturbances in the helical martensitic domain, and the phase transformation criterion is derived based on thermodynamics. The simulations successfully capture the main features of nucleation, pattern evolution and variation of front velocity of the helical martensitic band in the tube. The analytical results and the comparison with experiments are also discussed in this paper.  相似文献   

14.
The influence of temperature on attrition of two limestones during desulfurization in a fluidized bed reactor was investigated. Differences in the microstructure of the two limestones were reflected by a different thickness of the sulfate shell formed upon sulfation and by a different value of the ultimate calcium conversion degree. Particle attrition and fragmentation were fairly small under moderately bubbling fluidization conditions for both limestones. An increase of temperature from 850 °C to 900 °C led to an increase of the attrition rate, most likely because of a particle weakening effect caused by a faster CO2 evolution during calcination. This weakening effect, however, was not sufficiently strong to enhance particle fragmentation in the bed. The progress of sulfation, associated to the build-up of a hard sulfate shell around the particles, led in any case to a decrease of the extent of attrition. Sulfation at 900 °C was less effective than at 850 °C, and this was shown to be related to the porosimetric features of the different samples.  相似文献   

15.
The studies emphasize investigation of plasma formation, implosion, and radiation features as a function of two load configurations: compact multi-planar and cylindrical wire arrays. Experiments with different Z-pinch loads were performed on 1.6 MA, 100 ns, Zebra generator at University of Nevada, Reno. The multi-planar wire arrays (PWAs) were studied in open and closed configurations with Al, Cu, brass, Mo and W wires. In the open magnetic configurations (single, double, triple PWAs) magnetic fields are present inside the arrays from the beginning of discharge, while in closed configurations (prism-like PWA) the global magnetic field is excluded inside before plasma flow occurs. The new prism-like PWA allows high flexibility in control of implosion dynamics and precursor formation. The spectral modeling, magneto-hydrodynamic (MHD) and wire ablation dynamic model (WADM) codes were used to describe the plasma evolution and plasma parameters. Experimentally observed electron temperature and density in multiple bright spots reached 1.4 keV and 5 × 1021 cm?3, respectively. Two types of bright spots were observed. With peak currents up to 1.3 MA opacity effects became more pronounced and led to a limiting of the X-ray yields from compact cylindrical arrays. Despite different magnetic energy to plasma coupling mechanisms early in the implosion a comparison of compact double PWA and cylindrical WA results indicates that during the stagnation stage the same plasma heating mechanism may occur. The double PWA was found to be the best radiator tested at University scale 1 MA generator. It is characterized by a combination of larger yield and power, mm-scale size, and provides the possibility of radiation pulse shaping. Further, the newer configuration, the double PWA with skewed wires, was tested and showed the possibility of a more effective X-ray generation.  相似文献   

16.
This paper presents some results of URANS study of flow and heat transfer in a matrix of wall-bounded 8 × 8 round pins, mimicking internal cooling passage of gas-turbine blades. The focus is on flow unsteadiness, its role in heat transfer and the capabilities of RANS models to reproduce these features in a set-up of industrial relevance. The results for two Reynolds numbers, 10 000 and 30 000, are compared with the available experiments and LES. It is shown that the elliptic-relaxation eddy-viscosity model, ζ-f captures vortex shedding and the consequent gross effects on the flow development. However, a closer look at flow details reveals discrepancies, especially around the first three pin rows, where the unsteadiness reproduced by URANS shows much weaker amplitudes as compared with LES. Only further downstream the succession of forcing from a series of pins produced unsteadiness akin to those captured by LES. The comparison suggests that smaller structures undetected by URANS need to be resolved to capture properly the separation and wake characteristics of each row. At Re = 10 000, the average endwall Nusselt number agrees well with the LES, both being about 20% lower than in the experiment. For Re = 30 000 the URANS Nusselt is within 10% of the experimental value.  相似文献   

17.
We discuss calculations of synthetic spectra for the interpretation and analysis of K-shell and bound-free emission from argon-doped deuterium-filled OMEGA direct-drive implosion cores. The spectra are computed using a model that considers collisional-radiative atomic kinetics, continuum-lowering, detailed Stark-broadened line shapes, line overlapping, and radiation transport effects. The photon energy range covers the moderately optically thick n = 3  n = 1 and n = 4  n = 1 line transitions in He- and H-like Ar, their associated satellite lines in Li- and He-like Ar, and several radiative recombination edges. At the high-densities characteristic of implosion cores, the radiative recombination edges substantially shift to lower energies thus overlapping with several line transitions. We discuss the application of the spectra to spectroscopic analysis of doped implosion cores.  相似文献   

18.
The effect of local texture on inhomogeneous plastic deformation is studied in zirconium subjected to uniaxial compression. Cross-rolled commercially pure Zr 702 plate that had a strong basal (0 0 0 1) texture through the plate thickness, and a non-basal texture in cross-section, was obtained. At a compressive strain rate of 1 s?1, samples loaded either in the through-thickness or in-plane directions exhibited significant differences in yield strength, hardening response and failure mechanisms. These macroscopic differences are related to microstructural features by combining information from electron backscattered diffraction with real time in situ imaging and subsequent full-field strain measurements obtained using digital image correlation. Experimental results indicate that the through-thickness loaded zirconium samples, which show a strong basal-texture in the loading direction, do not deform homogeneously – implying the lack of a representative volume element. The detailed surface deformation fields provided by digital image correlation allow for a qualitative and quantitative analysis of the relationship between grain orientation and patterns of deformation bands that form as the precursors to development of an adiabatic shear band in the through-thickness loaded sample. For the in-plane loaded samples, inhomogeneities still exist at the microscale, but the collective behavior of several grains leads to a homogeneous response at the macroscale. It is observed that local texture for hcp polycrystals, which are significantly slip restricted, can directly affect both local and global response, even at low to moderate plastic strains.  相似文献   

19.
This paper describes buckling modes and stresses of elastic Kelvin open-cell foams subjected to [0 0 1], [0 1 1] and [1 1 1] uniaxial compressions. Cubic unit cells and cell aggregates in model foams are analyzed using a homogenization theory of the updated Lagrangian type. The analysis is performed on the assumption that the struts in foams have a non-uniform distribution of cross-sectional areas as observed experimentally. The relative density is changed to range from 0.005 to 0.05. It is thus found that long wavelength buckling and macroscopic instability primarily occur under [0 0 1] and [0 1 1] compressions, with only short wavelength buckling under [1 1 1] compression. The primary buckling stresses under the three compressions are fairly close to one another and almost satisfy the Gibson–Ashby relation established to fit experiments. By also performing the analysis based on the uniformity of strut cross-sectional areas, it is shown that the non-uniformity of cross-sectional areas is an important factor for the buckling behavior of open-cell foams.  相似文献   

20.
The plastic blunting process during stage II fatigue crack growth was studied in pure polycrystalline Ni to investigate effects of strain localization and inelastic behavior on the kinematics of crack advance. Correlations were obtained between strain fields ahead of a fatigue crack, crack advance per cycle and crack growth kinetics. Strain fields were quantified using a combination of in situ loading experiments, scanning electron microscopy and digital image correlation for 8 < ΔK < 20 MPa m1/2 and a fixed load ratio of 0.1. Results indicate that strain localized along a dominant deformation band, which was usually crystallographic and carried mostly pure shear for large loads and was of mixed character for lower loads. Instances of double deformation bands were observed, with bands acting either in a simultaneous or alternating fashion. It was found that the area integral of the opening strain for values larger than a given threshold, an “integrated” strain, had a power-law relationship with ΔK, with the exponent approximately equal to the Paris exponent (m). Therefore, the crack growth rate was proportional to the integrated strain. An analysis based on this correlation and the presence of dominant shear bands indicated that the integrated strain is related to the accumulated displacement in the band. This, in turn, is proportional to the product of the cyclic plastic zone radius and the average shear strain ahead of the tip, which represents a basic length scale for plastic blunting. Assumptions on the load dependence of these quantities, based on their observed spatial variation, allowed estimating m=21+11+n, where n′ is the cyclic hardening exponent (0 < n < 1). This gives 3 < m < 4, which accounts for about 50% of the observed values of m between 1.5 and 6 for a wide variety of metallic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号