首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This detailed the tribological and tribochemical properties of magnetite (Fe3O4) nanoflakes used as additives in #40 base oil in a four-ball tribo-tester. The average friction coefficient of the friction pair for lubricant containing the Fe3O4 nanoflakes of 1.5 wt% as a lubricant additive in the base oil is decreased by 18.06% compared to that of solely base oil. The chemical composition of base oil with the Fe3O4 nanoflake additives did not change during the 48-h friction assessment. The decreased saturation magnetization and increased coercivity of magnetite nanoflakes occurred due to the distortion of the basal planes and the presence of hematite (α-Fe2O3) generated by the tribochemical reactions during the friction process. The multi-layer low-shear-stress tribochemical lubrication films on the surface of the friction pair could form because the nanoflake particles arrange and adhere onto the surface of the friction pair in an orderly manner, and the tribochemical reactions of the friction pair in the presence of the nanoflakes occur as Fe  FeO  Fe3O4  γ-FeOOH  γ-Fe2O3  α-Fe2O3. The formation of the films can improve the tribological properties.  相似文献   

2.
We discuss calculations of synthetic spectra for the interpretation and analysis of K-shell and bound-free emission from argon-doped deuterium-filled OMEGA direct-drive implosion cores. The spectra are computed using a model that considers collisional-radiative atomic kinetics, continuum-lowering, detailed Stark-broadened line shapes, line overlapping, and radiation transport effects. The photon energy range covers the moderately optically thick n = 3  n = 1 and n = 4  n = 1 line transitions in He- and H-like Ar, their associated satellite lines in Li- and He-like Ar, and several radiative recombination edges. At the high-densities characteristic of implosion cores, the radiative recombination edges substantially shift to lower energies thus overlapping with several line transitions. We discuss the application of the spectra to spectroscopic analysis of doped implosion cores.  相似文献   

3.
The impact of the third (skewness) and fourth (kurtosis) reduced centered moments on the statistical modeling of E1 lines in complex atomic spectra is investigated through the use of Gram–Charlier, Normal Inverse Gaussian and Generalized Gaussian distributions. It is shown that the modeling of unresolved transition arrays with non-Gaussian distributions may reveal more detailed structures, due essentially to the large value of the kurtosis. In the present work, focus is put essentially on the Generalized Gaussian, the power of the argument in the exponential being constrained by the kurtosis value. The relevance of the new statistical line distribution is checked by comparisons with smoothed detailed line-by-line calculations and through the analysis of 2p  3d transitions of recent laser or Z-pinch absorption measurements. The issue of calculating high-order moments is also discussed (Racah algebra, Jucys graphical method, semi-empirical approach…).  相似文献   

4.
The propagation of energetic electrons from the focal spots of intense picosecond laser pulses was studied using targets consisting of planar foils and fine metal wires. High-resolution K-shell spectra of elements with atomic numbers in the range 46–74 (Pd to W) and with energies from 21 keV to 69 keV were recorded by a Cauchois-type spectrometer using a curved transmission crystal. The K-shell spectra resulted from the collisional ionization of 1 s electrons by energetic electrons that were generated in the laser focal spot and propagated into the planar foil region beyond the focal spot or into the metal wires adjacent to an irradiated wire. The lateral spread of the energetic electrons from the focal spot was determined from the source broadening of the K spectral lines and from the relative intensities of the K spectra from an irradiated wire and neighboring wires of different metals. The propagation distances up to 1 mm in a variety of materials indicated electron energies up to 1 MeV were generated in the laser focal spot. Inhibited propagation in an electrically insulating material was observed that results from a weak return current and incomplete space charge neutralization.  相似文献   

5.
The micro combustor is a key component of the micro thermophotovoltaic (TPV) system. Improving the wall temperature of the micro combustor is an effective way to elevate the system efficiency. An experimental study on the wall temperature and radiation heat flux of a series of cylindrical micro combustors (with a backward-facing step) was carried out. For the micro combustors with d = 2 mm, the regime of successful ignition (under the cold wall condition) was identified for different combustor lengths. Acoustic emission was detected for some cases and the emitted sound was recorded and analyzed. Under the steady-state condition, the effects of the combustor diameter (d), combustor length (L), flow velocity (u0) and fuel–air equivalence ratio (Ф) on the wall temperature distribution were investigated by measuring the detailed wall temperature profiles. In the case that the micro combustor is working as an emitter, the optimum efficiency was found at Ф  0.8, independent of the combustor dimensions (d and L) and the flow velocity. Under the experimental conditions employed in the present study, the positions of the peak wall temperature were found to be about 8–11 mm and 4–6 mm from the step for the d = 3 mm and d = 2 mm micro combustors, respectively, which are 8–11 and 8–12 times of their respective step heights. This result suggests that the backward-facing step employed in the combustor design is effective in stabilizing the flame position.  相似文献   

6.
A commercial product of carbon nano-particles, Cabot MONACH 1300 pigment black (CMPB), was studied for basic structural information and electrochemical performance in neutral aqueous electrolytes, aiming at applications in supercapacitors. As confirmed by SEM and HRTEM, the CMPB had a hierarchical structure, containing basic 10 nm nano-spheres which combined into ca. 50 nm agglomerates which further aggregated into larger particles of micrometres. The capacitance of this commercial material was found to increase with decreasing the size of hydrous cation (Li+  Na+  K+), instead of the cation crystal radius (K+  Na+  Li+) when coupled with the same anion (Cl). In electrolytes with the same cation concentration (K+), changing the anion from the larger dianion (SO42−) to the smaller monoanion (Cl) also increased the capacitance at high potential scan rates (>50 mV/s). Increasing electrolyte concentration produced expected effect, including raising the electrode capacitance, but lowering the equivalent series resistance (ESR), charge transfer resistance (CTR), and the diffusion resistance. At higher temperatures, the CMPB exhibited slightly higher capacitance, which does not agree with the Gouy–Chapman theory on electric double layer (EDL). A hypothesis is proposed to account for the capacitance increase with temperature as a result of the CMPB opening up some micro-pores for more ions to access in response to the temperature increase.  相似文献   

7.
A field experiment was conducted in Tianjin, China from September 9–30, 2010, focused on the evolution of Planetary Boundary Layer (PBL) and its impact on surface air pollutants. The experiment used three remote sensing instruments, wind profile radar (WPR), microwave radiometer (MWR) and micro-pulse lidar (MPL), to detect the vertical profiles of winds, temperature, and aerosol backscattering coefficient and to measure the vertical profiles of surface pollutants (aerosol, CO, SO2, NOx), and also collected sonic anemometers data from a 255-m meteorological tower. Based on these measurements, the evolution of the PBL was estimated. The averaged PBL height was about 1000–1300 m during noon/afternoon-time, and 200–300 m during night-time. The PBL height and the aerosol concentrations were anti-correlated during clear and haze conditions. The averaged maximum PBL heights were 1.08 and 1.70 km while the averaged aerosol concentrations were 52 and 17 μg/m3 under haze and clear sky conditions, respectively. The influence of aerosols and clouds on solar radiation was observed based on sonic anemometers data collected from the 255-m meteorological tower. The heat flux was found significantly decreased by haze (heavy pollution) or cloud, which tended to depress the development of PBL, while the repressed structure of PBL further weakened the diffusion of pollutants, leading to heavy pollution. This possible positive feedback cycle (more aerosols  lower PBL height  more aerosols) would induce an acceleration process for heavy ground pollution in megacities.  相似文献   

8.
Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over sparsely-spaced two-dimensional (2D) rod-roughened walls were performed. The rod elements were periodically arranged along the streamwise direction with pitches of px/k = 8, 16, 32, 64 and 128, where px is the streamwise spacing of the rods, and k is the roughness height. The Reynolds number based on the momentum thickness was varied from Reθ = 300–1400, and the height of the roughness element was k = 1.5θin, where θin is the momentum thickness at the inlet. The characteristics of the TBLs, such as the friction velocity, mean velocity, and Reynolds stresses over the rod-roughened walls, were examined by varying the spacing of the roughness features (8  px/k  128). The outer-layer similarity between the rough and smooth walls was established for the sparsely-distributed rough walls (px/k  32) based on the profiles of the Reynolds stresses, whereas those are not for px/k = 8 and 16. Inspection of the interaction between outer-layer large-scale motions and near-wall small-scale motions using two-point amplitude modulation (AM) covariance showed that modulation effect of large-scale motions on near-wall small-scale motions was strongly disturbed over the rough wall for px/k = 8 and 16. For px/k  32, the flow that passed through the upstream roughness element transitioned to a smooth wall flow between the consecutive rods. The strong influence of the surface roughness in the outer layer for px/k = 8 and 16 was attributed to large-scale erupting motions by the surface roughness, creating both upward shift of the near-wall turbulent energy and active energy production in the outer layer with little influence on the near-wall region.  相似文献   

9.
A green hydrothermal method was proposed for the synthesis of nanocrystalline ZnO2, using Zn5(CO3)2(OH)6 powder and 6 vol% H2O2 aqueous solution as the starting materials. Characterization results from X-ray diffraction, Raman, high resolution transmission electron microscopy and selected area electron diffraction revealed that the products synthesized at 80–120 °C for 6–18 h were pure cubic phase ZnO2 nanocrystals. Room temperature photoluminescence spectra of the as-synthesized ZnO2 nanocrystals displayed a wide and strong emission band in the visible region of about 525–570 nm upon laser excitation at 325 nm, which may have originated from their surface state and other crystal defects.  相似文献   

10.
A thin shell theoretical solution of two normally intersecting cylindrical shells subjected to thrust-out force and three kinds of moments transmitted through branch pipes is presented in this paper. The solutions of modified Morley equation, which can be applicable up to ρ0 = d/D  0.8 and λ = d/(DT)1/2  8 and the order of accuracy is raised to O(T/D), for the four loading cases are given. The accurate continuity conditions of generalized forces and displacements at the intersecting curve of two cylindrical shells for the four loading cases and the condition of the uniqueness of displacements are derived in this paper. The presented results are verified by experimental and numerical results successfully. They are in agreement with WRC Bulletin 297 when d/D is small.  相似文献   

11.
Coalescence of sessile droplets is studied experimentally with water–glycerin mixtures of different viscosities. Effects of viscosity on the dimensionless spreading length (Ψ) and the center-to-center distance (L) are investigated for two droplets; the first droplet (Ds) is stationary on a substrate and the second droplet (D0) landing at a center-to-center distance L from the first droplet. For a low viscosity fluid, Ψ is maximum when L approaches zero (or λ  1, where λ = 1  L/Ds), which represents a head-on collision. For a high viscosity fluid, Ψ is minimum when λ  0.6. The effect of λ on line printing for various viscosities is also examined by printing multiple droplets. We found that the larger the viscosity, the less the breakup between droplets; viscosities smaller than 60 wt% glycerin yielded line breakup. The overlap ratio of λ > 0.3 produced not a line, but a bigger droplet or puddle because of coalescence. Data obtained in this work can provide insights for the fabrication of conductive microtracks or microinterconnects in printed-electronics applications where a line breakup between droplets would lead to an electrical circuit short.  相似文献   

12.
Laboratory experiments were carried out to study the effects of sand particles on circular sand–water wall jets. Mean and turbulence characteristics of sand particles in the sand–water wall jets were measured for different sand concentrations co ranging from 0.5% to 2.5%. Effects of sand particle size on the centerline sand velocity of the jets were evaluated for sand size ranging from 0.21 mm to 0.54 mm. Interesting results with the range of measurements are presented in this paper. It was found that the centerline sand velocity of the wall jets with larger particle size were 15% higher than the jets with smaller particle size. Concentration profiles in the vertical direction showed a peak value at x/d = 5 (where x is the longitudinal distance from the nozzle and d is the nozzle diameter) and the sand concentration decreased linearly for x/d > 5. Experimental results showed that the turbulence level enhanced from the nozzle to x/d = 10. For sand–water wall jets with a higher concentration (co = 1.5–2.5%), the turbulence intensity became smaller than the corresponding single-phase wall jets by 34% due to turbulent modulation. A modified logarithmic formulation was introduced to model the longitudinal turbulent intensity at the centerline and along the axis of the jet.  相似文献   

13.
The variations of mass concentrations of PM2.5, PM10, SO2, NO2, CO, and O3 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31, 2014. By comparing the pollutant concentrations over this length of time, the characteristics of the monthly variations of mass concentrations of air pollutants were determined. We used the Pearson correlation coefficient to establish the relationship between PM2.5, PM10, and the gas pollutants. The results revealed significant differences in the concentration levels of air pollutants and in the variations between the different cities. The Pearson correlation coefficients between PMs and NO2 and SO2 were either high or moderate (PM2.5 with NO2: r = 0.256–0.688, mean r = 0.498; PM10 with NO2: r = 0.169–0.713, mean r = 0.493; PM2.5 with SO2: r = 0.232–0.693, mean r = 0.449; PM10 with SO2: r = 0.131–0.669, mean r = 0.403). The correlation between PMs and CO was diverse (PM2.5: r = 0.156–0.721, mean r = 0.437; PM10: r = 0.06–0.67, mean r = 0.380). The correlation between PMs and O3 was either weak or uncorrelated (PM2.5: r = −0.35 to 0.089, mean r = −0.164; PM10: r = −0.279 to 0.078, mean r = −0.127), except in Haikou (PM2.5: r = 0.500; PM10: r = 0.509).  相似文献   

14.
Turbulence modulation by the inertia particles in a spatially developing turbulent boundary layer flow over a hemisphere-roughened wall was investigated using the direct numerical simulation method. The Eulerian and Lagrangian approaches were used for the gas- and particle-phases, respectively. An immersed boundary method was employed to resolve the hemispherical roughness element. The hemispheres were staggered in the downstream direction and arranged periodically in the streamwise and spanwise directions with spacing of px/d= 4 and pz/d= 2 (where px and pz are the streamwise and spanwise spacing of the hemispheres, and d is the diameter). The effects of particles on the turbulent coherent structures, turbulent statistics and quadrant events were analyzed. The results show that the addition of particles significantly damps the vortices structures and increases the length scales of streak structures. Compared with the particle-laden flow over the smooth wall, the existence of the wall roughness decreases the mean streamwise velocity in the near wall region, and makes the peaks of Reynolds stresses profiles shift up. In addition, the existence of particles also increases the percentage contributions to Reynolds shear stress from the Q4 events, however, decreases the percentage contributions from other quadrant events.  相似文献   

15.
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl, NO3, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p < 0.01, R = 0.95 for wheat straw; p < 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.  相似文献   

16.
Results on diagnoses of laser-driven, shock-heated foam plasma with time-resolved Al 1s-2p absorption spectroscopy are reported. Experiments were carried out to produce a platform for the study of relativistic electron transport. In cone-guided Fast Ignition (FI), relativistic electrons generated by a high-intensity, short-pulse igniter beam must be transported through a cone tip to an imploded core. Transport of the energetic electrons could be significantly affected by the temperature-dependent resistivity of background plasmas. The experiment was conducted using four UV beams of the OMEGA EP laser at the Laboratory For Laser Energetics. One UV beam (1.2 kJ, 3.5 ns square) was used to launch a shock wave into a foam package target, consisting of 200 mg/cm3 CH foam with aluminum dopant and a solid plastic container surrounding the foam layer. The other three UV beams with the total energy of 3.2 kJ in 2.5 ns pulse duration were tightly focused onto a Sm dot target to produce a point X-ray source in the energy range of 1.4–1.6 keV. The quasi-continuous X ray signal was transmitted through the shock-heated Al-doped, foam layer and recorded with an X-ray streak camera. The measured 1s-2p Al absorption features were analyzed using an atomic physics code FLYCHK. Electron temperature of 40 eV inferred from the spectral analysis is consistent with 2-D DRACO Radiation-hydrodynamic simulations.  相似文献   

17.
Uniform rhombohedral α-Fe2O3 nanoparticles, ~60 nm in size, were synthesized via a triphenylphosphine-assisted hydrothermal method. Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) analyses showed that the as-synthesized rhombohedral nanoparticles were enclosed by six (1 0 4) planes. The concentration of triphenylphosphine played an important role in morphological evolution of the α-Fe2O3 nanoparticles. The as-prepared rhombohedral nanoparticles possessed remanent magnetization Mr of 2.6 × 10?3 emu/g and coercivity HC of 2.05 Oe, both lower than those of other α-Fe2O3 particles with similar size, indicating their potential applications as superparamagnetic precursor materials. Furthermore, these rhombohedral α-Fe2O3 nanoparticles exhibited good sensor capability toward H2O2 with a linear response in the concentration range of 2–20 mM.  相似文献   

18.
The studies emphasize investigation of plasma formation, implosion, and radiation features as a function of two load configurations: compact multi-planar and cylindrical wire arrays. Experiments with different Z-pinch loads were performed on 1.6 MA, 100 ns, Zebra generator at University of Nevada, Reno. The multi-planar wire arrays (PWAs) were studied in open and closed configurations with Al, Cu, brass, Mo and W wires. In the open magnetic configurations (single, double, triple PWAs) magnetic fields are present inside the arrays from the beginning of discharge, while in closed configurations (prism-like PWA) the global magnetic field is excluded inside before plasma flow occurs. The new prism-like PWA allows high flexibility in control of implosion dynamics and precursor formation. The spectral modeling, magneto-hydrodynamic (MHD) and wire ablation dynamic model (WADM) codes were used to describe the plasma evolution and plasma parameters. Experimentally observed electron temperature and density in multiple bright spots reached 1.4 keV and 5 × 1021 cm?3, respectively. Two types of bright spots were observed. With peak currents up to 1.3 MA opacity effects became more pronounced and led to a limiting of the X-ray yields from compact cylindrical arrays. Despite different magnetic energy to plasma coupling mechanisms early in the implosion a comparison of compact double PWA and cylindrical WA results indicates that during the stagnation stage the same plasma heating mechanism may occur. The double PWA was found to be the best radiator tested at University scale 1 MA generator. It is characterized by a combination of larger yield and power, mm-scale size, and provides the possibility of radiation pulse shaping. Further, the newer configuration, the double PWA with skewed wires, was tested and showed the possibility of a more effective X-ray generation.  相似文献   

19.
A continuous dichotomous beta gauge monitor was used to characterize the hourly content of PM2.5, PM10–2.5, and Black Carbon (BC) over a 12-month period in an urban street canyon of Hong Kong. Hourly vehicle counts for nine vehicle classes and meteorological data were also recorded. The average weekly cycles of PM2.5, PM10–2.5, and BC suggested that all species are related to traffic, with high concentrations on workdays and low concentrations over the weekends. PM2.5 exhibited two comparable concentrations at 10:00–11:00 (63.4 μg/m3) and 17:00–18:00 (65.0 μg/m3) local time (LT) during workdays, corresponding to the hours when the numbers of diesel-fueled and gasoline-fueled vehicles were at their maximum levels: 3179 and 2907 h−1, respectively. BC is emitted mainly by diesel-fueled vehicles and this showed the highest concentration (31.2 μg/m3) during the midday period (10:00–11:00 LT) on workdays. A poor correlation was found between PM2.5 concentration and wind speed (R = 0.51, P-value > 0.001). In contrast, the concentration of PM10–2.5 was found to depend upon wind speed and it increased with obvious statistical significance as wind speed increased (R = 0.98, P-value < 0.0001).  相似文献   

20.
Previous experiments have shown that the distinct features of macro-martensitic band nucleation and propagation in micro-tube under tension are in three stages: the initiation and propagation of a single helical band  self-merging  propagation of the cylindrical band. In this paper, the martensitic formation and helical band propagation in the tube at different temperatures are modeled. The free energy function of the tube is formulated by introducing an equivalent method to calculate the stress and strain disturbances in the helical martensitic domain, and the phase transformation criterion is derived based on thermodynamics. The simulations successfully capture the main features of nucleation, pattern evolution and variation of front velocity of the helical martensitic band in the tube. The analytical results and the comparison with experiments are also discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号