首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
ABSTRACT

This investigation deals with the nonlinear axisymmetric static and transient response of orthotropic annular shallow spherical caps with a free edge hole and with a rigid central mass, subjected to uniformly distributed load and a central load. The dynamic analogue of Marguerre equations, in terms of normal displacement w and stress function Ψ, are employed. An orthogonal point collocation method is used for spatial discretization and a Newmark-β scheme is used for time integration. Static load, step function load, and sinusoidal pulse load are considered. The influence of annular ratio on the response is studied for isotropic (β = 1) and orthotropic (β = 3) clamped caps, with a rise to thickness ratio of 1.5.  相似文献   

2.
The general bending problem of conical shells on the elastic foundation (Winkler Medium) is not solved. In this paper, the displacement solution method for this problem is presented. From the governing differential equations in displacement form of conical shell and by introducing a displacement function U(s,θ), the differential equations are changed into an eight-order soluble partial differential equation about the displacement function U(s,θ) in which the coefficients are variable. At the same time, the expressions of the displacement and internal force components of the shell are also given by the displacement function U(s θ). As special cases of this paper, the displacement function introduced by V.S. Vlasov in circular cylindrical shell[5], the basic equation of the cylindrical shell on the elastic foundation and that of the circular plates on the elastic foundation are directly derived.Under the arbitrary loads and boundary conditions, the general bending problem of the conical shell on the elastic foundation is reduced to find the displacement function U(s,θ).The general solution of the eight-order differential equation is obtained in series form. For the symmetric bending deformation of the conical shell on the elastic foundation, which has been widely usedinpractice,the detailed numerical results and boundary influence coefficients for edge loads have been obtained. These results have important meaning in analysis of conical shell combination construction on the elastic foundation,and provide a valuable judgement for the numerical solution accuracy of some of the same type of the existing problem.  相似文献   

3.
The general development of the theory given here considers the material to be orthotropic and continuous over (n ? 1) elastic or rigid supports. The effect of rotatory inertia and in-plane loads are also included while formulating the equations of motion. Double and triple series solutions are given for orthotropic continuous plates. By matching the continuity conditions at the intermediate supports and satisfying the boundary conditions at the outer edge, the frequency determinant is obtained. For the purpose of numerical computations, an isotropic plate continuous over an intermediate-rigid or elastic-support and free and with no in-plane loads at the outer edge is considered. It is found that the influence of Poisson's ratio on the frequency parameter is significant only for the first symmetric or asymmetric modes. The rotatory inertia influences the frequency parameter when the radius to thickness ratio is less than 80, viz, when the plate is thick. Moreover, the elasticity of the support influences considerably the free vibration of plates.  相似文献   

4.
The von Kármán type partial differential equations governing non-linear dynamic behaviour of circular plates resting on Winkler and Pasternak elastic foundations have been analysed analytically. The space and time-wise integrations have been carried out employing the Chebyshev polynomials and implicit Houbolt techniques, respectively. The influence of foundation parameters K and G on the large amplitude response of circular plates subjected to step function loads has been studied for both the clamped immovable as well as simply supported immovable edge conditions. Foundation parameters K and G have been determined for the minimax central response. For all values of K,values of G should be between 30 and 40 for the clamped circular plates and the value of G should be a maximum for the simply supported circular plates.  相似文献   

5.
Orthotropic circular annular plates have a lot of applications in engineering such as space structures and rotary machines. In this paper, frequency equations for the in-plane vibration of the orthotropic circular annular plate for general boundary conditions were derived. To obtain the frequency equation, first the equation of motion for the circular annular plate in the cylindrical coordinate is derived by using the stress-strain- displacement expressions. Helmholtz decomposition is used to uncouple the equations of motion. The wave equation is obtained by assumption a harmonic solution for the uncoupled equations. Using the separation of the variables leads to the general wave equation solution and the in-plane displacements in the r and θ directions. Finally, boundary conditions are exerted and the natural frequency is derived for general boundary conditions. The obtained results are validated by comparing with the previously reported and those from finite element analysis.  相似文献   

6.
In this paper, applying perturbation method to von Kármán-type nonlinear large deflection equations of orthotropic plates by taking deflection as perturbation parameter, thé postbuckling behavior of simply supported rectangular orthotropic plates under inplane compression is investigated. Two types of in-plane boundary conditions are now considered and the effects of initial imperfections are also studied. Numerical results are presented for various cases of orthotropic composite plates having different elastic properties. It is found that the results obtained are in good agreement with those of experiments.  相似文献   

7.
A. Jodaei 《Meccanica》2014,49(1):215-237
Three-dimensional elasticity solution for static analysis of functionally graded piezoelectric (FGP) annular plates with and without elastic foundations through using state-space based differential quadrature method (SSDQM) at different boundary conditions is presented in this paper. The material properties are assumed to have an exponent-law variation along the thickness. A semi-analytical approach which makes use of state-space method in thickness direction and one-dimensional differential quadrature method in radial direction is utilized to obtain the mechanical behavior of FGP annular plates. The state variables include a combination of electric potential, electric displacement, three mechanical displacement parameters and three stress parameters. Numerical results are given to demonstrate the convergency and accuracy of the present method. Both closed circuit and open circuit effects are studied and the influences of the Winkler and shearing layer elastic coefficients of the foundations, the material property graded index, radius, thickness, mechanical load and boundary conditions on the deflection response of the FGP annular plates are investigated. The new results can be used as a benchmark solutions for future researches.  相似文献   

8.
Rectangular plates resting on elastic foundations are operational activities of large transportation aircraft on runways, footings, foundation of spillway dam, civil building in cold regions, and bridge structures. Hence, in the present work, nonlinear bending analysis of embedded rectangular plates is investigated based on orthotropic Mindlin plate theory. The elastic medium is simulated by orthotropic Pasternak foundation. Adopting the nonlinear strain–displacement relation, the governing equations are derived based on energy method and Hamilton’s principle. The generalized differential quadrature method is performed for the case when all four ends are clamped supported. The influences of the plate thickness, shear-locking, elastic medium constants, and applied force on the nonlinear bending of the rectangular plate are studied. Results indicate that increasing the plate thickness decreases the deflection of the plate. It is also observed that increasing the applied force increases the deflection of the plate. Furthermore, considering elastic medium decreases deflection of the plate, and the effect of the Pasternak-type is higher than the Winkler-type on the maximum deflection of the plate. Also, it is found that the present results have good agreement with previous researches.  相似文献   

9.
In the present paper, Chebyshev series are employed to obtain the non-linear static and dynamic response of isotropic and orthotropic annular plates. The non-linear partial differential equations obtained from von Karman's large deflection plate theory have been solved by using the Chebyshev series in the space domain and the Houbolt numerical integration scheme in the time domain. Two different sets of boundary conditions of the annulus are investigated and detailed numerical results have been obtained for different cases of orthotropy and geometry.  相似文献   

10.
基于双参数弹性基础模型,研究了梯度弹性基础上正交异性薄板的屈曲问题. 首先,基于能量法与变分原理,给出了梯度弹性基础上正交异性薄板的屈曲控制方程,并得到了梯度弹性基础刚度系数K1 与K2的计算式;进而,通过将位移函数采用三角函数展开的方法,给出了单向压缩载荷作用下、四边简支正交异性弹性基础板屈曲载荷的计算式;在算例中,通过将该文的解退化到单纯的正交异性板,并与经典弹性解比较,证明了理论的正确性;最后,求解了弹性模量在厚度方向上呈幂律分布的梯度基础上的薄板屈曲问题,分析了基础上下表层材料弹性模量比与体积分数指数对屈曲载荷的影响.  相似文献   

11.
This paper considers the bending of transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate, subject to a transverse load in the form of qrk (k is zero or a finite even number). The differential equations satisfied by stress functions for the particular problem are derived. An elaborate analysis procedure is then presented to derive these stress functions, from which the analytical expressions for the axial force, bending moment and displacements are obtained through integration. The method is then applied to the problem of transversely isotropic functionally graded circular plate subject to a uniform load, illustrating the procedure to determine the integral constants from the boundary conditions. Analytical elasticity solutions are presented for simply-supported and clamped plates, and, when degenerated, they coincide with the available solutions for an isotropic homogenous plate. Two numerical examples are finally presented to show the effect of material inhomogeneity on the elastic field in FGM plates.  相似文献   

12.
基于能量法和变分原理,采用双参数弹性基础模型,研究了梯度弹性基础上正交异性薄板在分布载荷作用下的弯曲问题。首先,根据能量法与变分原理,给出了梯度弹性基础上正交异性薄板的弯曲微分平衡方程,并得到了梯度弹性基础刚度系数 与 的计算表达式;进而,假设 向正应力在厚度方向上均匀分布,推导了弹性基础 向位移衰减函数 的计算式。在算例中,通过将梯度弹性基础退化为均质基础,并与Vlazov模型对比,证明了本文理论的正确性;最后,求解了弹性模量呈幂律分布的梯度基础上薄板的挠度分布,分析了基础上下表层材料弹性模量比 与体积分数指数 对薄板挠度分布的影响。  相似文献   

13.
This paper analyses the bending of rectangular orthotropic plates on a Winkler elastic foundation.Appropriate definition of symplectic inner product and symplectic space formed by generalized displacements establish dual variables and dual equations in the symplectic space.The operator matrix of the equation set is proven to be a Hamilton operator matrix.Separation of variables and eigenfunction expansion creates a basis for analyzing the bending of rectangular orthotropic plates on Winkler elastic foundation and obtaining solutions for plates having any boundary condition.There is discussion of symplectic eigenvalue problems of orthotropic plates under two typical boundary conditions,with opposite sides simply supported and opposite sides clamped.Transcendental equations of eigenvalues and symplectic eigenvectors in analytical form given.Analytical solutions using two examples are presented to show the use of the new methods described in this paper.To verify the accuracy and convergence,a fully simply supported plate that is fully and simply supported under uniformly distributed load is used to compare the classical Navier method,the Levy method and the new method.Results show that the new technique has good accuracy and better convergence speed than other methods,especially in relation to internal forces.A fully clamped rectangular plate on Winkler foundation is solved to validate application of the new methods,with solutions compared to those produced by the Galerkin method.  相似文献   

14.
This research investigates three-dimensional free vibration analysis of four-parameter continuous grading fiber reinforced (CGFR) cylindrical panels resting on Pasternak foundations by using generalized power-law distribution. The functionally graded orthotropic panel is simply supported at the edges, and it is assumed to have an arbitrary variation of matrix volume fraction in the radial direction. A four-parameter power-law distribution presented in literature is proposed. Symmetric and asymmetric volume fraction profiles are presented. Suitable displacement functions that identically satisfy the boundary conditions at the simply supported edges are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which are solved by generalized differential quadrature method, and natural frequency is obtained. The fast rate of convergence of the method is demonstrated, and to validate the results, comparisons are made with the available solutions for functionally graded isotropic shells with/without elastic foundations. The effect of the elastic foundation stiffness parameters and various geometrical parameters on the vibration behavior of the CGFR cylindrical panels is investigated. This work mainly contributes to illustrate the influence of the four parameters of power-law distributions on the vibration behavior of functionally graded orthotropic cylindrical panels resting on elastic foundation. This paper is also supposed to present useful results for continuous grading of matrix volume fraction in the thickness direction of a cylindrical panel on elastic foundation and comparison with similar discrete laminated composite cylindrical panel.  相似文献   

15.
杨加明  孙良新 《力学季刊》2002,23(4):568-574
本文对Karman型四边支承正交异性薄板在5种不同边界条件下的几何非线性弯曲进行了统一分析。所设的位移函数均为梁振动函数。它们精确地满足边界条件,利用Galerkin方法和位移函数的正交属性,转换控制方程为非线性代数方程。用“稳定化双共轭梯度法”求解稀疏矩阵线性方程组以及“可调节参数的修正迭代法”求解非线性代数方程组,最后给出了相应的数值结果。  相似文献   

16.
This paper describes the modified bending equations of layered orthotropic plates in the first approximation. The approximation of the solution of the equation of the three-dimensional theory of elasticity by the Legendre polynomial segments is used to obtain differential equations of the elastic layer. For the approximation of equilibrium equations and boundary conditions of three-dimensional theory of elasticity, several approximations of each desired function (stresses and displacements) are used. The stresses at the internal points of the plate are determined from the defining equations for the orthotropic material, averaged with respect to the plate thickness. The construction of the bending equations of layered plates for each layer is carried out with the help of the elastic layer equations and the conjugation conditions on the boundaries between layers, which are conditions for the continuity of normal stresses and displacements. The numerical solution of the problem of bending of the rectangular layered plate obtained with the help of modified equations is compared with an analytical solution. It is determined that the maximum error in determining the stresses does not exceed 3 %.  相似文献   

17.
This paper reviews studies and analyzes results on the effect of discrete ribs on the dynamic characteristics of rectangular plates and cylindrical shells. Use is made of the vibration equations derived from the classical theories of beams, plates, and shells. The effect of Pasternak’s elastic foundation on the critical velocities of a structurally orthotropic model of a ribbed cylindrical shell is determined. Nonstationary problems are solved for perforated and ribbed shells of revolution filled with a fluid or resting on an elastic foundation and subjected to moving or impulsive loads. Results from studies of the behavior of sandwich shell structures under impulsive loads of various types are presented  相似文献   

18.
该文以四边简支的方形蜂窝矩形夹层板为例,在经典夹层板理论的基础上,运用离散结构形式的运动控制方程和线性微分算子的可交换性,给出了一种把具有蜂窝型夹心的夹层板的包含三个广义位移的控制方程组化为,仅包含一个广义位移函数的单一方程的简单方法,并给出了四边简支蜂窝型夹层板的固有频率的精确解。研究结果对蜂窝夹层板的结构设计和工程应用具有指导意义。  相似文献   

19.
Three-dimensional free vibration analysis of functionally graded piezoelectric (FGPM) annular plates resting on Pasternak foundations with different boundary conditions is presented. The material properties are assumed to have an exponent-law variation along the thickness. A semi-analytical approach which makes use of state-space method in thickness direction and one-dimensional differential quadrature method in radial direction is utilized to obtain the influences of the Winkler and shearing layer elastic coefficients of the foundations on the non-dimensional natural frequencies of functionally graded piezoelectric annular plates. The analytical solution in the thickness direction can be acquired using the state-space method and approximate solution in the radial direction can be obtained using the one-dimensional differential quadrature method. Numerical results are given to demonstrate the convergency and accuracy of the present method. The influences of the material property graded index, circumferential wave number and thickness of the annular plate on the dynamic behavior are also investigated. Since three-dimensional free vibration analysis of FGPM annular plates on elastic foundations has not been implemented before, the new results can be used as benchmark solutions for future researches.  相似文献   

20.
Governing non-linear integro-differential equations for cylindrically orthotropic shallow spherical shells resting on linear Winkler-Pasternak elastic foundations, undergoing moderately large deformations are presented. Three problems, namely, non-linear static deflection response, non-linear dynamic deflection response and dynamic snap-through buckling of orthotropic shells have been investigated. The influences of material orthotropy, foundation parameters and shell-material damping on the deflection response are determined for the clamped and the simply- supported immovable edge conditions accurately. Orthotropy, foundation interaction and material damping play significant roles in improving the load carrying capacity of the shell structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号