首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the stability of steady convective flow in an inclined plane fluid layer bounded by perfectly heat-conducting solid planes in the presence of a homogeneous longitudinal temperature gradient under stable stratification where the layer is inclined so that the temperature in its lower part is lower than in the upper part.  相似文献   

2.
We consider the stationary plane-parallel convective flow, studied in [1], which appears in a two-dimensional horizontal layer of a liquid in the presence of a longitudinal temperature gradient. In the present paper we examine the stability of this flow relative to small perturbations. To solve the spectral amplitude problem and to determine the stability boundaries we apply a version of the Galerkin method, which was used earlier for studying the stability of convective flows in vertical and inclined layers in the presence of a transverse temperature difference or of internal heat sources (see [2]). A horizontal plane-parallel flow is found to be unstable relative to two critical modes of perturbations. For small Prandtl numbers the instability has a hydrodynamic character and is associated with the development of vortices on the boundary of counterflows. For moderate and for large Prandtl numbers the instability has a Rayleigh character and is due to a thermal stratification arising in the stationary flow.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 95–100, January–February, 1974.  相似文献   

3.
V. A. Demin 《Fluid Dynamics》2005,40(6):865-874
The stability of mechanical equilibrium of an inclined fluid layer with respect to three-dimensional perturbations under the action of high-frequency vibration is studied. It is shown that under heating from below the spiral perturbations are always the most dangerous for vibration transverse to the layer. For vertical vibration the stability limit is determined by three-dimensional perturbations whose shape depends in a complicated way on the angle of inclination of the layer and the vibrational Rayleigh number. In the limiting case of a thin vertical layer supercritical vibrational-convective motions are calculated numerically and analytically and scenarios of transition from quasi-equilibrium to irregular motions are studied.  相似文献   

4.
Viscous liquid film flow along an inclined corrugated (sinusoidal) surface has been studied. Calculations were performed using an integral model. The stability of nonlinear steady-state flows to arbitrary perturbations was examined using the Floquet theory. It has been shown that for each type of corrugation there is a critical Reynolds number for which unstable perturbations occur. It has been found that this value greatly depends on the physical properties of the liquid and geometric parameters of the flow. In particular, in the case of film flow down a smooth wall, the critical waveformation parameter depends only on the angle of inclination of the flow surface. The values of the corrugation parameters (amplitude and period) were obtained for which the film flow down a wavy wall is stable to arbitrary perturbations up to moderate Reynolds numbers. Such parameter values exist for all investigated angles of inclination of the flow surface.  相似文献   

5.
In this paper we study the stability of the equilibrium of a liquid heated from below, wherein the liquid saturates a planar layer of a porous medium arbitrarily inclined to the direction of gravity. We consider the cases for which the boundaries of the layer are heat-conducting and also thermally insulated. In a horizontal layer with heat-conducting boundaries equilibrium is destroyed by perturbations of cellular structure [1], In a vertical layer the minimum critical temperature gradient corresponds to perturbations of plane-parallel structure. The transition to cellular perturbations in the case of heat-conducting boundaries takes place at an arbitrarily small angle of inclination of the layer to the vertical. For the thermally insulated layer the crisis of equilibrium is connected with plane-parallel perturbations at all angles of inclination.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 127–131, May–June, 1973.The author thanks G. Z. Gershuni for stating the problem and his interest in the work.  相似文献   

6.
Stability of a steady convective flow in a plane inclined layer with perfectly heat-conducting solid boundaries in the presence of a uniform longitudinal temperature gradient to long-wave perturbations is studied. The boundaries of the domain of stability to long-wave perturbations are found, and the critical Grashof numbers for the most dangerous even helical perturbations are determined.  相似文献   

7.
The applicability of the Squire's transformation for stability analysis of stratified two-phase flow in horizontal and inclined channels is examined. It is shown that for the considered flow such a transformation requires some additional constraints on the change of the inclination angle and flow rates of each of the phases. While the Squire's theorem (on the two-dimensionality of the critical disturbances) rigorously holds for the horizontal two-phase flow, for the inclined flow an exact mathematical theorem cannot be formulated. Nevertheless, it has been proven that 2D perturbations are the critical ones also for the case of inclined channel, since the transformation of a 3D stability problem to its 2D analog is associated with a stabilizing effect of reducing the system inclination, in addition to the reduction of the phases flow rates as in the case of horizontal flows.  相似文献   

8.
The thermosolutal instability of double-diffusive convection in an inclined fluid-saturated porous layer with a concentration-based internal heat source is investigated. The linear instability of small-amplitude perturbations to the system is analyzed with respect to transverse and longitudinal rolls. The resultant eigenvalue problem is solved numerically utilizing the Chebyshev tau method. It is shown that an increasing inclination angle causes a strong stabilization in the transverse rolls irrespective of the internal heat source or vertical solutal Rayleigh number. Furthermore, substantial qualitative changes are demonstrated in the linear instability thresholds with variations in the inclination angle and concentration-based heat source.  相似文献   

9.
The stability of the steady-state plane-parallel flow of a non-Newtonian fluid layer in the gravity field along an inclined rigid surface is investigated. It is shown that the most dangerous are the long-wave perturbations propagating over the free surface. The stability maps are plotted for such perturbations in the Reynolds number — gravity parameter plane. With increase in the gravity number the layer flow becomes less stable. The layer deviation from the vertical lines stabilizes the flow.  相似文献   

10.
In contrast to the corresponding viscous flow, the convective flow of a homogeneous liquid in a planar vertical layer whose boundaries are maintained at different temperatures is stable [1]. When a porous layer is saturated with a binary mixture, in the presence of potentially stable stratification one must expect an instability of thermal-concentration nature to be manifested. This instability mechanism is associated with the difference between the temperature and concentration relaxation times, which leads to a buoyancy force when an element of the fluid is displaced horizontally. In viscous binary mixtures, the thermal-concentration instability is the origin of the formation of layered flows, which have been studied in detail in recent years [2–4]. The convective instability of the equilibrium of a binary mixture in a porous medium was considered earlier by the present authors in [5]. In the present paper, the stability of stationary convective flow of a binary mixture in a planar vertical porous layer is studied. It is shown that in the presence of sufficient longitudinal stratification the flow becomes unstable against thermal-concentration perturbations; the stability boundary is determined as a function of the parameters of the problem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 150–157, January–February, 1980.  相似文献   

11.
The equilibrium stability is investigated of a system consisting of two semi-infinite isothermal masses of fluid divided by a horizontal layer of finite thickness of the same fluid with a vertical temperature gradient directed downwards. The transition layer is separated by thin permeable membranes. Neutral stability curves are constructed for different membrane resistances. In the case of high permeability, the equilibrium is absolutely unstable with respect to monotonic-type longwave perturbations. For low permeability membranes, instability with respect to monotonic finite-wavelength perturbations is characteristic.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 171–173, July–August, 1985.  相似文献   

12.
The laminar flow of a thin layer of heavy viscous magnetic liquid down an inclined wall is examined. The stability and control of the flow of an ordinary liquid are affected only by alteration of the angle of inclination of the solid wall and the velocity of the adjacent gas flow. When magnetic liquids are used [1, 2], an effective method of flow control may be control of the magnetic field. By using magnetic fields of various configurations it is possible to control the flow of a thin film of viscous liquid, modify the stability of laminar film flow, and change the shape of the free surface of the laminarly flowing thin film, a factor which plays a role in mass transfer, whose rate depends on the phase contact surface area. The magnetic field significantly affects the shape of the free surface of a magnetic liquid [3, 4]. In this paper the velocity profile of a layer of viscous magnetic liquid adjoining a gas flow and flowing down an inclined solid wall in a uniform magnetic field is found. It is shown that the flow can be controlled by the magnetic field. The problem of stability of the flow is solved in a linear formulation in which perturbations of the magnetic field are taken into account. The stability condition is found. The flow stability is affected by the nonuniform nature of the field and also by its direction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 59–65, September–October, 1977.  相似文献   

13.
Investigations of the stability of a subsonic laminar boundary layer have shown that, other things being equal, the stability of the laminar flow is considerably improved by cooling the entire surface of the body to a constant temperature Tw=const lower than the temperature of the free stream [1–3]. This is attributable to an increase in the critical Reynolds number of loss of stability and a decrease in the range of unstable perturbations of the Tollmien-Schlichting wave type when the surface is cooled. Recently, in the course of investigating the stability of laminar flow over a flat plate it was found [4, 5] that a similar improvement in flow stability can be achieved by raising the temperature of a small part of the surface near the leading edge of the plate. In this study we examine the possibility of delaying the transition to turbulent flow by creating a nonuniform temperature distribution along the surface of thin profiles, where the development of an adverse pressure gradient in the outer flow has a destabilizing effect on the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 36–42, September–October, 1986.In conclusion, the authors wish to thank M. N. Kogan for useful discussions of their results.  相似文献   

14.
Stability of the flow that arises under the action of a gravity force and streamwise finitefrequency vibrations in a nonuniformly heated inclined liquid layer is studied. By the Floquet method, linearized convection equations in the Boussinesq approximation are analyzed. Stability of the flow against planar, spiral, and threedimensional perturbations is examined. It is shown that, at finite frequencies, there are parametricinstability regions induced by planar perturbations. Depending on their amplitude and frequency, vibrations may either stabilize the unstable ground state or destabilize the liquid flow. The stability boundary for spiral perturbations is independent of vibration amplitude and frequency.  相似文献   

15.
The instability of a bubbling layer due to the presence of a vertical gradient in the ascent velocity of the bubbles, causing stratification of the layer with respect to density, is considered in [1]. A similar instability mechanism of a fluidized bed is studied in [2]. The stabilizing influence of electrical and magnetic fields on a bubbling layer is shown in [3]. Consideration is given in [4] to the influence of the conditions of supply of the gas on the stability of a bubbling layer with an immobile filling. The present work deals with the stability of the mechanical equilibrium of a horizontal layer of liquid with an immobile filling through which a gas soluble in the liquid is bubbled. It is shown that there exists a critical solubility of the gas at which the mechanical equilibrium is unstable with respect to monotonie perturbations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 68–74, September–October, 1984.The author would like to thank V. P. Myasnikov and V. V. Dil ' man for their interest in this work, and M. H. Rozenberg for assistance with the programming.  相似文献   

16.
The method of linear stability analysis is applied to determine the necessary conditions of existence of natural hydrate deposits under Arctic permafrost. It is found that the existence is limited to relatively small thicknesses of the hydrate stability zone and the underlying methane-saturated layer, low-to-moderate permeability of the deposits, and low-to-moderate hydrate saturation. At larger thicknesses, higher permeability, or higher saturation, the interface between the two layers is unstable to small-amplitude perturbations. The results do not support the hypothesis that the interface instability may lead to accelerating meltdown of natural methane hydrates in response to increase in global temperature.  相似文献   

17.
In this work, the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model, with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity. Four key parameters, including the flow velocity, the mass ratio, the gravity parameter, and the inclination angle between the pipe length and the gravity direction, are considered to affect the static and dynamic behaviors of the soft pipe. The stability analyses show that, provided that the inclination angle is not equal to π, the soft pipe is stable at a low flow velocity and becomes unstable via flutter once the flow velocity is beyond a critical value. As the inclination angle is equal to π, the pipe experiences, in turn,buckling instability, regaining stability, and flutter instability with the increase in the flow velocity. Interestingly, the stability of the pipe can be either enhanced or weakened by varying the gravity parameter, mainly dependent on the value of the inclination angle.In the nonlinear dynamic analysis, it is demonstrated that the post-flutter amplitude of the soft pipe can be extremely large in the form of limit-cycle oscillations. Besides,the oscillating shapes for various inclination angles are provided to display interesting dynamical behaviors of the inclined soft pipe conveying fluid.  相似文献   

18.
The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finite value of the Prandtl number, Pr. The transition in a vertical channel has already been studied for 0?Pr?100 with or without the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs) that are spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. Heat Trans. T. ASME 124 (2002) 635–642), we examine transition where the secondary flow takes the form of longitudinal rolls (LRs), which are independent of the steamwise direction, for Pr=7 and for a specific value of the angle of inclination of the fluid layer without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by performing a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection points, loses stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numerically for the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the tertiary flow and show that the bifurcation can be either monotone or oscillatory. To cite this article: M. Nagata, S. Generalis, C. R. Mecanique 332 (2004).  相似文献   

19.
When the surface temperature of a liquid is a harmonic function of time with a frequency, a temperature wave propagates into the liquid. The amplitude of this wave decreases exponentially with distance from the surface. The temperature oscillation is essentially concentrated in a layer of the order of (2/)1/2, where x is the thermal conductivity of the liquid (thermal boundary layer). Depending on the phase, at certain positions below the surface the temperature gradient is directed downwards and if its magnitude is sufficiently large (the magnitude is a function of the amplitude and frequency of the surface oscillations) the liquid can become unstable with respect to the onset of convection. In that case the convective motion may spread beyond the initial unstable layer. For low frequencies the stability condition can be derived from the usual static Rayleigh criterion, on the basis of the Rayleigh number and the average temperature gradient of the unstable layer. This quasi-static approach, used by Sal'nikov [1], is appropriate to those cases in which the period of the temperature oscillations is much larger than the characteristic time of the perturbations. But when these times are of the same order, the problem must be analyzed in dynamic terms. The stability problem must then be formulated as a problem of parametricresonance excitation of velocity oscillations due to the action of a variable parameter-the temperature gradient.In an earlier work [2] we considered the problem of the stability of a horizontal layer of liquid with a periodically varying temperature gradient. It was assumed that the thickness of the layer was much smaller than the penetration depth of the thermal wave, so that the temperature gradient could be assumed to be independent of position. In the present work we consider the opposite case, in which the liquid layer is assumed to be much larger than the penetration depth, i. e., a thermal boundary layer can be defined. The temperature gradient at equilibrium, which is a parameter in the equations determining the onset of perturbations, is here a periodic function of time and a relatively complicated function of the depth coordinate z. The periodic oscillations are solved by the Fourier method; the equations for the amplitudes are solved by the approximate method of KarmanPohlhausen.The authors are grateful to L. G. Loitsyanskii for helpful criticism.  相似文献   

20.
A numerical and experimental study has been made on the flow and heat transfer in inclined air-filled cavities with aspect ratios 1–18 at Ra numbers from 2·104–5·105 and angles of inclination from 40 to 90°. Core stratification influences the flow. Due to this there arises a torque with two components depending on angle of inclination. On basis of the two torques the computed effects on flow and temperature fields can be explained. For the heat transfer a scaling law could be derived. Experimental data validate the numerical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号