首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear and nonlinear stability analyses were performed on a fluid layer with a concentration-based internal heat source. Clear bimodal behaviour in the neutral curve (with stationary and oscillatory modes) is observed in the region of the onset of oscillatory convection, which is a previously unobserved phenomenon in radiation-induced convection. The numerical results for the linear instability analysis suggest a critical value γ c of γ, a measure for the strength of the internal heat source, for which oscillatory convection is inhibited when γ > γ c . Linear instability analyses on the effect of varying the ratio of the salt concentrations at the upper and lower boundaries conclude that the ratio has a significant effect on the stability boundary. A nonlinear analysis using an energy approach confirms that the linear theory describes the stability boundary most accurately when γ is such that the linear theory predicts the onset of mostly stationary convection. Nevertheless, the agreement between the linear and nonlinear stability thresholds deteriorates for larger values of the solute Rayleigh number for any value of γ.  相似文献   

2.
宁利中  张珂  宁碧波  吴昊  田伟利 《应用力学学报》2020,(2):737-742,I0019,I0020
为了研究矩形倾斜腔体中普朗特数Pr=0.72的流体对流斑图和分区,本文基于流体力学方程组进行了数值模拟。在相对瑞利数r=6.0的情况下,观察了倾角θ=10°和θ=60°时对流斑图随着时间的发展,发现系统存在单圈型对流和多圈型对流两种斑图。流线随着倾角的变化说明:随着倾角增加,对流圈数逐渐减少,对流波长逐渐增加,对流波数减小;然后,随着对流圈数显著地减少,系统由多圈型对流过渡到单圈型对流。根据模拟计算结果,给出了多圈型对流过渡到单圈型对流的临界倾角θc随着相对瑞利数r变化的关系曲线。对流在θ-r平面上分为两个区域:θ<θc时系统是单圈型对流,θ>θc时系统是多圈型对流。对流最大振幅A和努塞尔数Nu随着倾角θ的变化曲线被临界倾角θc分成两段,它们有不同的变化规律。因此,临界倾角也可以由对流最大振幅A或努塞尔数Nu的变化曲线来确定。  相似文献   

3.
The onset of convective rolls instability in a horizontal porous layer subject to a basic temperature gradient inclined with respect to gravity is investigated. The basic velocity has a linear profile with a non-vanishing mass flow rate, i.e., it is the superposition of a Hadley-type flow and a uniform flow. The influence of the viscous heating contribution on the critical conditions for the onset of the instability is assessed. There are four governing parameters: a horizontal Rayleigh number and a vertical Rayleigh number defining the intensity of the inclined temperature gradient, a Péclet number associated with the basic horizontal flow rate, and a Gebhart number associated with the viscous dissipation effect. The critical wave number and the critical vertical Rayleigh number are evaluated for assigned values of the horizontal Rayleigh number, of the Péclet number, and of the Gebhart number. The linear stability analysis is performed with reference either to transverse or to longitudinal roll disturbances. It is shown that generally the longitudinal rolls represent the preferred mode of instability.  相似文献   

4.
Convection induced by the selective absorption of radiation is investigated, for the case of an internal heat source that is modelled quadratically with respect to concentration. The growth rate for the linearised system is shown to be real, and a linear instability analysis is performed. To establish conditional and unconditional nonlinear stability results, both the Darcy and Forchheimer models are employed to describe fluid flow. Due to the presence of significant regions of potential subcritical instabilities, the results indicate that linear theory may only be accurate enough to predict the onset of convective motion when the model for the internal heat source is predominantly linear.Received: 6 May 2003, Accepted: 9 August 2003, Published online: 12 December 2003  相似文献   

5.
The effect of internal heat source on convection in a layer of fluid in a porous medium was analyzed using linear and nonlinear analysis, and boundaries are assumed to be stress-free and isothermal. Normal mode technique is used for linear analysis, and energy method is used for nonlinear stability analysis. The presence of heat generation leads to the possibility of the existence of a subcritical instability. Effects of increase of Darcy–Brinkman number and internal heat parameter on critical Rayleigh numbers were analyzed numerically using Chebyshev pseudospectral method.  相似文献   

6.
The aeroacoustic noise generated by a high speed, planar gas jet impinging on a flat plate is investigated experimentally. The jet used in this study is typical of those commonly found in industrial applications such as in various coating control and heat transfer processes. Normal jet impingement on the plate is found to generate strong acoustic tones over a wide range of impingement distances and jet velocities. The characteristics of these tones, as a function of the jet velocity and impingement distance, are quantified. Phase and amplitude measurements of the pressure fluctuations on the impingement plate indicate that the acoustic tones are generated by an antisymmetric instability mode of the jet oscillation. The effect of plate inclination in both the transverse and span-wise directions, with respect to the incident jet, is also studied. The jet-plate tone is found to be much more sensitive to changes in the span-wise plate inclination than to changes in the transverse inclination, but in both cases, a complete suppression of the tone is found to be possible.  相似文献   

7.
This paper discusses the results of a study related to natural convection cooling of a heat source located on the bottom wall of an inclined isosceles triangular enclosure filled with a Cu water-nanofluid. The right and left walls of the enclosure are both maintained cold at constant equal temperatures, while the remaining parts of the bottom wall are insulated. The study has been carried out for a Rayleigh number in the range 104 ≤ Ra ≤ 106, for a heat source length in the range 0.2 ≤ ε ≤0.8, for a solid volume fraction in the range 0 ≤ ?≤0.06 and for an inclination angle in the range 0° ≤ δ≤45°. Results are presented in the form of streamline contours, isotherms, maximum temperature at the heat source surface and average Nusselt number. It is noticed that the addition of Cu nanoparticles enhances the heat transfer rate and therefore cooling effectiveness for all values of Rayleigh number, especially at low values of Ra. The effect of the inclination angle becomes more noticeable as one increases the value of Ra. For high Rayleigh numbers, a critical value for the inclination angle of δ = 15° is found for which the heat source maximum temperature is highest.  相似文献   

8.
In this work, the nonlinear behaviors of soft cantilevered pipes containing internal fluid flow are studied based on a geometrically exact model, with particular focus on the mechanism of large-amplitude oscillations of the pipe under gravity. Four key parameters, including the flow velocity, the mass ratio, the gravity parameter, and the inclination angle between the pipe length and the gravity direction, are considered to affect the static and dynamic behaviors of the soft pipe. The stability analyses show that, provided that the inclination angle is not equal to π, the soft pipe is stable at a low flow velocity and becomes unstable via flutter once the flow velocity is beyond a critical value. As the inclination angle is equal to π, the pipe experiences, in turn,buckling instability, regaining stability, and flutter instability with the increase in the flow velocity. Interestingly, the stability of the pipe can be either enhanced or weakened by varying the gravity parameter, mainly dependent on the value of the inclination angle.In the nonlinear dynamic analysis, it is demonstrated that the post-flutter amplitude of the soft pipe can be extremely large in the form of limit-cycle oscillations. Besides,the oscillating shapes for various inclination angles are provided to display interesting dynamical behaviors of the inclined soft pipe conveying fluid.  相似文献   

9.
10.
A plane steady-state two-layer fluid flow under the coupled action of the buoyancy and Marangoni forces is considered. The system is oriented at an arbitrary angle with respect to the gravity force. Exact solutions generalizing the Ostroumov-Birikh solution are obtained and their stability is studied in the framework of a linear theory. On the basis of numerical calculations, the influence of the inclination angle, the thickness of the layers, and the wall heating conditions on the instability mechanisms is investigated.  相似文献   

11.
A constant-thickness thermal boundary layer is formed by the presence of uniform suction into a constant temperature hot surface bounding a porous medium—the Wooding problem. When the hot surface lies below the porous medium, the system is susceptible to thermoconvective instability. The present paper is concerned with how the classical linear stability analysis is modified by inclining the heated surface. Analysis is confined to disturbances in the form of transverse rolls because the equivalent analysis for longitudinal rolls may be described analytically in terms of that for the horizontal layer. The linear stability analysis is made difficult by the absence of a second bounding surface, and the method of multiple shooting is needed in order to obviate the consequence of having a stiff system of disturbance equations. Therefore, the computational domain is split into 5 or 10 subdomains. It is found that all modes of instability travel up the heated surface unless the surface is horizontal. The system is found to be linearly stable for all inclinations above \(31.85473^\circ \), a value which is remarkably close to that for the inclined Darcy-Bénard problem.  相似文献   

12.
A buoyancy-induced stationary flow with viscous dissipation in a horizontal porous layer is investigated. The lower boundary surface is impermeable and subject to a uniform heat flux. The upper open boundary has a prescribed, linearly varying, temperature distribution. The buoyancy-induced basic velocity profile is parallel and non-uniform. The linear stability of this basic solution is analysed numerically by solving the disturbance equations for oblique rolls arbitrarily oriented with respect to the basic velocity field. The onset conditions of thermal instability are governed by the Rayleigh number associated with the prescribed wall heat flux at the lower boundary, by the horizontal Rayleigh number associated with the imposed temperature gradient on the upper open boundary, and by the Gebhart number associated with the effect of viscous dissipation. The critical value of the Rayleigh number for the onset of the thermal instability is evaluated as a function of the horizontal Rayleigh number and of the Gebhart number. It is shown that the longitudinal rolls, having axis parallel to the basic velocity, are the most unstable in all the cases examined. Moreover, the imposed horizontal temperature gradient tends to stabilise the basic flow, while the viscous dissipation turns out to have a destabilising effect.  相似文献   

13.
A linear instability analysis for the inception of double-diffusive convection with a concentration based internal heat source is presented. The system encompasses a layer of fluid which lies above a porous layer saturated with the same fluid. Detailed stability characteristics results are presented for key physical parameters including the solute Rayleigh number, depth ratio of the fluid to porous layer and strength of radiative heating.  相似文献   

14.
The linear thermoconvective instability of the basic parallel flow in a plane and horizontal porous channel is investigated. The boundary walls are assumed to be impermeable and subject to symmetric and uniform heat fluxes. The wall heat fluxes produce either a net heating or a net cooling of the fluid saturated porous medium. A horizontal mass flow rate is externally impressed leading to a stationary basic state with a temperature gradient inclined to the vertical. A region of possibly unstable thermal stratification exists either in the lower half-channel (boundary heating), or in the upper half-channel (boundary cooling). The convective instability of the basic flow is governed by the Rayleigh number and by the Péclet number. In the case of boundary heating, the thermal instability arises when the Rayleigh number exceeds its critical value, that depends on the Péclet number. The change of the critical Rayleigh number as a function of the Péclet number is determined numerically for arbitrary normal modes oblique to the basic flow direction. The most dangerous modes are the longitudinal rolls, with a wave vector perpendicular to the basic velocity. There exists a minimum value of the Péclet number, 19.1971, below which no linear instability is detected.  相似文献   

15.
In this study, we detail a method for estimating the flux-averaged solid fraction of a steady granular flows moving down an inclined rectangular chute using velocity measurements from along the perimeter cross section, combined with knowledge of the mass flow rate through the cross section. The chute is 5 cm wide and 150 cm long with an adjustable inclination angle. Four inclination angles, from 27° to 36° at 3° intervals, are tested. This angle range overlaps the internal friction angle of the glass beads, which are 4 mm nominal in diameter. Two slender mirrors are installed at the top and the bottom of the transparent chute to reflect images of the flow down the chute of the two surfaces. This allows photographic recording of the flow with a PIV imaging system and measurement of the flow depth. The mass flow rate can be calibrated simultaneously by collecting the accumulated mass at the chute exit. A linear interpolation scheme is proposed to interpolate the volume flow rate in each section of the chute. Sensitivity analysis suggests that the relative standard deviation of this scheme is about ±6%, i.e., the resultant solid volume fraction is only moderately dependent on the interpolation scheme for the tested cases. This is further confirmed by a direct intercepting method. Compared to the sophisticated magnetic resonance imaging (MRI) or the radioactive positron emission particle tracking (PEPT) methods, the present method is verified as a cost-effective and nonhazardous alternative for ordinary laboratories. Two distinct groups of streamwise dependence of the solid fractions are found. They are separated by the inclination angle of the chute and agreed with the internal friction angle. In the experiments using the two smaller inclination angles, the solid fraction ratios are found to be linear functions of the streamwise distance, while for the two larger inclination angles, the ratios have a nonlinear concave shape. All decrease with growing downstream distance.  相似文献   

16.
Tilting influences the flow patterns and thus the heat transfer and pressure drop during condensation in smooth tubes. However, few studies are available on diabatic two-phase flows in inclined tubes. The purpose of the present paper is to review two-phase flow in inclined tubes, with specific reference to condensation. Firstly, the paper reviews convective condensation in horizontal tubes. Secondly, an overview is given of two-phase flow in inclined tubes. Thirdly, a review is conducted on condensation in inclined tubes. It is shown for convective condensation in inclined tubes that the inclination angle influences the heat transfer coefficient. The heat transfer coefficient can be increased or decreased depending on the experimental conditions, and especially the flow pattern. Under certain conditions, an inclination angle may exist, which leads to an optimum heat transfer coefficient. Furthermore, this paper highlights the lack of experimental studies for the prediction of the inclination angle effect on the flow pattern, the heat transfer coefficient and the pressure drop in two-phase flows during phase change.  相似文献   

17.
 Mixed convection heat transfer in rectangular channels has been investigated experimentally under various operating conditions. The lower surface of the channel is subjected to a uniform heat flux, sidewalls are insulated and adiabatic, and the upper surface is exposed to the surrounding fluid. Experiments were conducted for Pr=0.7, aspect ratios AR=5 and 10, inclination angles 0° ≤ θ ≤ 30°, Reynolds numbers 50 ≤ Re ≤ 1000, and modified Grashof numbers Gr*=7.0 × 105 to 4.0 × 107. From the parametric study, local Nusselt number distributions were obtained and effects of channel inclination, surface heat flux and Reynolds number on the onset of instability were investigated. Results related to the buoyancy affected secondary flow and the onset of instability have been discussed. Some of the results obtained from the experimental measurements are also compared with the literature, and a good agreement was observed. The onset of instability was found to move upstream for increasing Grashof number and increasing aspect ratio. On the other hand, onset of instability was delayed for increasing Reynolds number and increasing inclination angle. Received on 19 March 2001 / Published online: 29 November 2001  相似文献   

18.
The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finite value of the Prandtl number, Pr. The transition in a vertical channel has already been studied for 0?Pr?100 with or without the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs) that are spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. Heat Trans. T. ASME 124 (2002) 635–642), we examine transition where the secondary flow takes the form of longitudinal rolls (LRs), which are independent of the steamwise direction, for Pr=7 and for a specific value of the angle of inclination of the fluid layer without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by performing a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection points, loses stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numerically for the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the tertiary flow and show that the bifurcation can be either monotone or oscillatory. To cite this article: M. Nagata, S. Generalis, C. R. Mecanique 332 (2004).  相似文献   

19.
We study the problem of double-diffusive convection in a reacting fluid with a concentration and magnetic field effect–based internal heat source. A linear instability analysis and nonlinear stability analysis are performed, and using the finite element method of p order, we get the numerical results of each case. The numerical results are presented for fixed–fixed and free–free boundary conditions.  相似文献   

20.
The experimental realization of thermocapillary flow without return flow is reported. This type of flow (linear flow) was proposed and analyzed theoretically by Smith and Davis (J. Fluid Mech., 132:119–144, 1983). We suppressed the return flow by providing channels and side channels with lower flow resistance compared to that of the return flow. Cooling the layer with linear flow from above results in the Marangoni instability of longitudinal rolls as the most dangerous mode. Strong linear flow stabilizes the system against longitudinal rolls. We report preliminary results on the threshold and on the wavelength of the longitudinal rolls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号