首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of a buoyant vortex ring in the near field was examined experimentally, and the findings were compared with those of a non-buoyant ring with a similar Reynolds number. The experiments were performed in a water tank, and the vortices were produced by a cylindrical tube of aspect ratio 2. Laser sheet flow visualization and PIV measurements were carried out. In the near field, the initial column of the buoyant fluid breaks down due to the presence of Rayleigh–Taylor instability at the buoyant fluid interface. Subsequently, a large diameter vortex ring with a large spreading rate, compared with the non-buoyant ring, emerges. The celerity of buoyant vortex continued to decrease throughout the range examined, in contrast to the constant celerity of the non-buoyant ring. The vorticity in the core of buoyant and non-buoyant vortex rings is symmetric and has a Gaussian distribution. However, the buoyant vortex ring evolves into a thin core ring, whereas the non-buoyant ring becomes a thick core ring shortly after the ring formation. This difference is brought on by the rapid entrainment and the significant growth of the buoyant ring following the breakup of the initial formation.  相似文献   

2.
An intriguing variety of vortex structures arise during buoyant convection, especially in the presence of background stratification and rotation. These vortices play an important role in environmental fluid motions, bearing upon small-scale turbulence to planetary-scale circulation. A brief review of vortex motions associated with buoyant convection is presented in this paper, emphasizing the sources of vorticity, evolution of vortex structures and their role in oceanic and atmospheric dynamics. The genesis of a variety of vortices, for example, mushroom vortices, geostrophic and ageostrophic vortices, dipolar structures and hetons in buoyant convection flows is described, and parameterizations to represent their properties are discussed. New laboratory and numerical simulation results on vortex-related phenomena in stratified and rotating fluids and their implications in geophysical convective flows are also presented.  相似文献   

3.
Most previous studies of mesoscale variability in the ocean have emphasized that rings and eddies are isolated vortices embedded in relatively homogeneous water. Recent observations of eddy systems in the California Current System (CCS), however, show that at least some CCS eddy systems continue to dynamically interact with inshore coastal (cold) and offshore (warm) waters of the California Current through the process of lateral vortex entrainment. Oceanic data suggest that lateral vortex entrainment of non-local waters with significantly different temperature and salinity characteristics may partially account for the presence of high shear mixing regimes, double diffusive phenomenon and secondary circulations at depth in the vicinity of the eddies. Two different sets of laboratory experiments were conducted to assess the kinematic possibility of lateral vortex entrainment as a generation mechanism for these oceanic phenomena. The results of the laboratory studies qualitatively support the conclusion that lateral vortex entrainment could produce at least some of the observed oceanic phenomena.  相似文献   

4.
Three-dimensional interaction of vortices with finite core is investigated numerically using the Rosenhead-Moore approximation. As the computational scheme in this approximation cannot deal with the structure of the vortex core, a bundle of vortex elements is employed to represent a single physical vortex tube. After the validity of this method was confirmed by comparing the numerical result for a single vortex ring composed of various number of the elements with the analytical solution, two cases of interaction of two vortex rings were studied. The first case is two vortex rings traveling along a common axis, and the second is two vortex rings moving side by side along parallel axes. Comparison with the experiments showed good agreement.  相似文献   

5.
The unsteady nonlinear interaction of three-dimensional vortices with a free surface is a great challenge in fluid mechanics, which has deep theoretical significance and important practical background. Applying the three-dimensional VOF method, the interactions of three-dimensional axisymmetric vortex rings with a free surface in an incompressible viscous fluid are numerically simulated. The influence of the Froude number and the surface tension are studied and the evolution of the vorticity, the trajectories of the vortex rings and the baroclinic vorticity on the surface are obtained. The results agreed well with the experiments reported in the literature. The project supported by the National Natural Science Foundation of China  相似文献   

6.
Langmuir monolayers consist of amphiphilic molecules at the air–water interface and can be modeled as two-dimensional fluids. Earlier experiments [D.J. Olson, G.G. Fuller, J. Non-Newtonian Fluid Mech. 89 (2000) 187–207] on 4:1 contraction and 4:1 expansion flows have been simulated using an integral constitutive equation of the K-BKZ type, suitably modified to account for strain-thickening in the planar extensional viscosity. The model has been used to fit linear viscoelastic data (G′ and G″) and the shear viscosity (ηS), while the amount of strain-hardening is assumed, due to lack of experimental data. The simulations are in good agreement with the experiments on Newtonian monolayers, which show no vortices in the contraction but large inertial vortices in the expansion. For the viscoelastic monolayer (a poly-octadecyl methacrylate or PODMA), the opposite is true. The contraction flow shows vortices, while in the expansion flow the vortex activity is substantially reduced compared with the Newtonian one. The viscoelastic behavior is well captured by the model, provided that substantial strain-thickening is exhibited by the monolayer in planar extension. The latter behavior is very much like that for a branched LDPE melt, which also shows big vortices due to strain-hardening in planar as well as in uniaxial extension.  相似文献   

7.
Using a contour dynamics method for inviscid axisymmetric flow we examine the effects of core deformation on the dynamics and acoustic signatures of coaxial interacting vortex rings. Both “passage” and “collision” (head-on) interactions are studied for initially identical vortices. Good correspondence with experiments is obtained. A simple model which retains only the elliptic degree of freedom in the core shape is used to explain some of the calculated features.  相似文献   

8.
The deformation and instability of a low-density spherical bubble induced by an incident and its reflected shock waves are studied by using the large eddy simulation method. The computational model is firstly validated by experimental results from the literature and is further used to examine the effect of incident shock wave strength on the formations and three-dimensional evolutions of the vortex rings. For the weak shock wave case (Ma?=?1.24), the baroclinic effect induced by the reflected shock wave is the key mechanism for the formation of new vortex rings. The vortex rings not only move due to the self-induced effect and the flow field velocity, but also generate azimuthal instability due to the pressure disturbance. For the strong shock wave case (Ma?=?2.2), a boundary layer is formed adjacent to the end wall owing to the approach of vortex ring, and unsteady separation of the boundary layer near the wall results in the ejection and formation of new vortex rings. These vortex rings interact in the vicinity of the end wall and finally collapse to a complicated vortex structure via azimuthal instability. For both shock wave strength cases, the evolutions of vortex rings due to the instability lead to the formation of the complicated structure dominated by the small-scale streamwise vortices.  相似文献   

9.
This paper describes results obtained by using the inviscid Cloud-in-Cell vortex method to model the vortex sheet which is shed and rolls up from a single sharp edge. There is good agreement between these results and previous (Pullin 1978) computations of the development of the sheet in impulsively started incompressible inviscid flow. The Cloud-in-Cell method has been modified to include viscous diffusion calculated by finite differences on the mesh to give a mixed Eulerian-Lagrangian Navier-Stokes solver. This method has been shown to model the diffusing free vortex and the Stokes boundary layer quite accurately. It is used to compute impulsively started flow past sharp right-angled edges and edges with small rounding. The effect of viscous diffusion on the development of the shed vortex is discussed.

The method is also used to study the effect of rounding on the vortex shedding from a right-angled edge in oscillatory flow. This problem is particularly important in determining the roll damping and hence response of certain types of ship hull in waves. It is shown that the strength and effect of the shed vortices rapidly decrease as the ratio of the edge radius to the oscillation amplitude increases, and that at larger values of this ratio the mode of shedding changes from two vortices per cycle from one edge to a more complicated mode. The computed results are compared with flow visualisation using dye and neutrally buoyant particles in water flow around an oscillating edge.  相似文献   


10.
11.
Analysis methodology for 3C-PIV data of rotary wing vortices   总被引:1,自引:0,他引:1  
3C-PIV data from tip vortices of either fixed-wing or rotating wing experiments are challenging from an analysis point of view. Model motion, vortex wander, spurious vectors, periodic and aperiodic effects, turbulence, and other disturbing effects are all present in the data. In most cases the vortices are not measured perpendicular to their axis as well. Engineers need time-averaged properties from the vortex in the vortex axis system for a proper modelization within simulation codes. This article describes the methods needed to deal with all the mentioned problem areas, including the conditional averaging and rotation into the vortex axis system. The methods are validated by using numerically generated vortex vector fields, and finally applied to experimental data from a hover condition of a model rotor.  相似文献   

12.
Compressible subsonic turbulent starting jet with a relatively large Reynolds number of significant practical importance is investigated using large eddy simulation (LES), starting from a smooth contraction nozzle. The computational domain of truncated conical shape is determined through the comparison of the time-averaged numerical solution with the particle imaging velocimetry measurements for the steady jet. It is shown that the starting jet consists of a leading vortex ring followed by a quasi-steady jet, and the instantaneous velocity field exhibits contraction and expansion zones, corresponding to the high pressure (HP) and low pressure (LP) regions formed by the convecting vortex rings, and are related to the Kelvin-Helmholtz instability. The thin boundary layer inside the smooth contraction nozzle evolves into a shear layer at the nozzle exit and develops with the downstream penetration of the jet. Using λ 2 criterion, the formation and evolution of the vortical structures are temporally visualized, illustrating distortion of vortex rings into lobed shapes prior to break-down. Rib-shape streamwise vortex filaments exist in the braid region between a pair of consecutive vortex rings due to secondary instabilities. Finally, formation and dynamics of hairpin vortices in the shear layer is identified.  相似文献   

13.
This computational study examines the unsteady cross-stream vorticity structures that form when one or more streamwise vortices are immersed in homogeneous and boundary-layer shear flows. A quasi-two-dimensional limit is considered in which the velocity and vorticity fields, while still possessing three nonzero components, have vanishing gradient in the streamwise direction. This idealization is suitable to applications such as streamwise vortices that occur along a ship hull or airplane fuselage and it can be used as an idealized representation of the quasi-streamwise vortices in the near-wall region of a turbulent boundary layer. In this quasi-two-dimensional idealization, the streamwise velocity has no effect on the cross-stream velocity associated with the vortex. However, the vortex acts to modify the cross-stream vorticity component, resulting in regions of the flow with strong deviations in streamwise velocity. This paper examines the complex structures that form as the cross-stream vorticity field is wrapped up by the vortex and the effect of these structures on the streamwise velocity field, first for vortices immersed in homogeneous shear flow and then for vortices immersed in a boundary layer along a flat wall. Received 2 January 2002 and accepted 13 August 2002 Published online 3 December 2002 RID="*" ID="*" This project was supported by the Office of Naval Research under Grant Number N00014-01-1-0015. Dr. Thomas Swain is the program manager. Communicated by T.B. Gatski  相似文献   

14.
Inviscid coaxial interactions of two vortex rings, including head-on collisions and leapfrogging motions, are considered using a contour dynamics technique. Interactions of vortex rings with solid bodies are also investigated by combining the contour dynamics technique with a boundary integral equation method. Numerical results show that a clean, successful passage motion is possible for two vortex rings with not too thick cores. In both cases of head-on collisions and leapfrogging motions, very large core deformations are observed when two vortex rings get close to each other. A head-tail structure is formed in the later stage of a head-on collision of two fat vortices. Numerical results also show that a vortex ring will stretch and slow down when it moves toward a solid boundary, will shrink and speed up when it moves away from a solid boundary, and will either translate steadily or approach an oscillating asymptotic state when it is far away from any boundaries. The project supported by The National Education Commission of China and NASA under cooperative grant agreement #NCC5-34.  相似文献   

15.
This study considers the linear, inviscid response to an external strain field of classes of planar vortices. The case of a Gaussian vortex has been considered elsewhere, and an enstrophy rebound phenomenon was noted: after the vortex is disturbed enstrophy feeds from the non-axisymmetric to mean flow. At the same time an irreversible spiral wind-up of vorticity fluctuations takes place. A top-hat or Rankine vortex, on the other hand, can support a non-decaying normal mode.In vortex dynamics processes such as stripping and collisions generate vortices with sharp edges and often with bands or rings of fine scale vorticity at their periphery, rather than smooth profiles. This paper considers the stability and response of a family of vortices that vary from a broad profile to a top-hat vortex. As the edge of the vortex becomes sharper, a quasi-mode emerges and vorticity winds up in a critical layer, at the radius where the angular velocity of the fluid matches that of a normal mode on a top-hat vortex. The decay rate of these quasi-modes is proportional to the vorticity gradient at the critical layer, in agreement with theory. As the vortex edge becomes sharper it is found that the rebound of enstrophy becomes stronger but slower.The stability and linear behaviour of coherent vortices is then studied for distributions which exhibit additional fine structure within the critical layer. In particular we consider vorticity profiles with ‘bumps’, ‘troughs’ or ‘steps’ as this fine structure. The modified evolution equation that governs the critical layer is studied using numerical simulations and asymptotic analysis. It is shown that depending on the form of the short-scale vorticity distribution, this can stabilise or destabilise quasi-modes, and it may also lead to oscillatory behaviour.  相似文献   

16.
Optimal control of inlet jet flows is of broad interest for enhanced mixing in ventilated rooms. The general approach in mechanical ventilation is forced convection by means of a constant flow rate supply. However, this type of ventilation may cause several problems such as draught and appearance of stagnation zones, which reduces the ventilation efficiency. A potential way to improve the ventilation quality is to apply a pulsating inflow, which has been hypothesised to reduce the stagnation zones due to enhanced mixing. The present study aims at testing this hypothesis, experimentally, in a small-scale two-dimensional water model using Particle Image Velocimetry with an in-house vortex detection program. We are able to show that for an increase in pulsation frequency or alternatively in the flow rate the stagnation zones are reduced in size and the distribution of vortices becomes more homogeneous over the considered domain. The number of vortices (all scales) increases by a factor of four and the swirl-strength by about 50% simply by turning on the inflow pulsation. Furthermore, the vortices are well balanced in terms of their rotational direction, which is validated by the symmetric Probability Density Functions of vortex circulation (Γ) around Γ = 0. There are two dominating vortex length scales in the flow, namely 0.6 and 0.8 inlet diameters and the spectrum of vortex diameters become broader by turning on the inflow pulsation. We conclude that the positive effect for enhanced mixing by increasing the flow rate can equally be accomplished by applying a pulsating inflow.  相似文献   

17.
The flow over a flat plate delta wing at incidence and in sideslip is studied using vortex lattice models based on streamwise penelling. For the attached flow problem the effect of sideslip is simulated by modifying the standard vortex lattice model for zero sideslip by aligning the trailing vortices aft of the wing along the resultant flow direction. For the separated flow problem a non-linear vortex lattice model is developed for both zero and non-zero sideslip angles in which the shape and position of the leading edge separation vortices are calculated by an iterative procedure starting from an assumed initial shape. The theoretical values are compared with available theoretical and experimental results.  相似文献   

18.
The experimental results of studying the effect of homogeneous stratification of the fluid on the conditions of generation of a Kárman vortex street [1] developing in the wake of a cylinder in steady horizontal motion are described. In a homogeneous medium at Reynolds numbers Re >5 two symmetrical regions of vorticity of opposite sign are formed behind the cylinder and move together with the latter. As the speed of the cylinder increases, the link between the vortices and the cylinder grows weaker, the vortices are stretched out along the flow and at Re > 40 begin to separate alternately, forming a vortex street in the wake. At first, the frequency of vortex separation increases sharply with increase in Re, but then levels off. It is found that in a uniformly stratified fluid the onset of vortex separation from the moving cylinder is delayed. The dependence of the critical Reynolds number (onset of vortex separation) on the internal Froude number is obtained. The effect of stratification of the fluid on the frequency of separation of the vortices in the Kármán street is investigated. The effect of the Froude number on the dependence of the Strouhal number on the Reynolds number is established.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 83–86, January–February, 1986.In conclusion the authors wish to thank A. T. Onufriev for his interest in their work and useful discussions of the results.  相似文献   

19.
《力学快报》2020,10(6):419-428
Wake separation is crucial to aircraft landing safety and is an important factor in airport operational efficiency. The near-ground evolution characteristics of wake vortices form the foundation of the wake separation system design. In this study, we analysed the near-ground evolution of vortices in the wake of a domestic aircraft ARJ21 initialised by the lift-drag model using large eddy simulations based on an adaptive mesh. Evolution of wake vortices formed by the main wing, flap and horizontal tail was discussed in detail. The horizontal tail vortices are the weakest and dissipate rapidly, whereas the flap vortices are the strongest and induce the tip vortex to merge with them. The horizontal tail and flap of an ARJ21 do not significantly influence the circulation evolution, height change and movement trajectory of the wake vortices. The far-field evolution of wake vortices can therefore be analysed using the conventional wake vortex model.  相似文献   

20.
This is a review article of recent research developments on the motion of a polygonal ring configuration of vortex structures with singular vorticity distributions in incompressible and inviscid flows on a non-rotating sphere. Numerical computation of a single vortex sheet reveals that the Kelvin-Helmholtz instability gives rise to the formation of a polygonal ring arrangement of rolling-up spirals. An application of methods of Hamiltonian dynamics to the N-vortex problem on the sphere shows that the motion of the ring configuration of homogeneous point vortices, which is a simple model for the rolling-up spirals, becomes chaotic after a long time evolution. Some remarks on an extension of the present research and a generic non-self-similar collapse are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号