首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
动静组合加载下岩石破坏的声发射实验   总被引:5,自引:0,他引:5  
在霍普金森(SHPB)实验系统上进行了动静组合加载下岩石破坏的声发射实验,获得了动静组合加载下花岗岩声发射能量的变化规律。结果表明,动静组合加载下声发射能量规律呈现出2种明显不同的特征:I型,声发射峰值能量之后,能量迅速衰减,到加载末期,能量出现一定的回升,产生了拐点;II型,声发射峰值能量之后,能量衰减相对I型较慢,且不出现拐点。分别讨论了轴向静载和动载应变率对声发射能量的影响:声发射峰值能量随轴向静载增大而减小;当轴向静载位于岩石弹性段时,峰前声发射能量随静载缓慢增大,当轴向静载超过弹性段时,峰前声发射能量随轴向静载增大而急剧增大;声发射峰值能量和峰前能量均随动载应变率增大而减小。本研究对于重新寻求动静组合加载下岩石破坏的声发射前兆规律具有理论和实践意义。 更多还原  相似文献   

2.
加载速率对岩石的力学性质以及变形破坏方式具有重要的影响。基于MTS810电液伺服材料试验系统与PCI-2声发射仪对岩样进行不同加载速率作用下的单轴压缩和声发射试验。研究结果表明:(1)在各级加载速率作用下,岩样单轴压缩应力-应变曲线大致经历了压密、弹性、屈服、破坏四个阶段。岩样峰后曲线在加载速率为0.001~0.01 mm/s时出现台阶型分段跌落状,在加载速率为0.01~0.1 mm/s时呈现光滑、陡峭的连续曲线。(2)岩样峰值强度、弹性模量随加载速率的增加而增大,与加载速率对数均呈现三次多项式拟合关系。峰值应变随加载速率的增加而减小,与加载速率对数呈现线性拟合关系。(3)随着加载速率由0.001mm/s增加至0.1mm/s,岩样吸收的总应变能 具有波动性,可释放的弹性应变能 增幅60.42%,耗散应变能 降幅 66.38%, 增幅43.33%, 降幅66.67%,岩样破裂模式由拉剪破坏逐渐向张拉劈裂破坏过渡,岩样破裂块数增多。(4)加载速率为0.001~0.1 mm/s时,岩样破坏方式有所不同,但破坏为同一类损伤过程。单轴压缩状态下,能量耗散使得岩样损伤致使强度丧失,而能量释放使得岩样宏观破裂面贯通,并向着能量释放的方向张裂或弹射破坏。  相似文献   

3.
针对复杂应力状态下高强混凝土受压变形破坏过程中的能量演化机制问题,开展不同围压下C60高强混凝土试样三轴压缩试验,分析其在受力全过程中的变形与破坏特征。根据试验结果,探究了不同围压下高强混凝土三轴压缩过程能量演化机制。研究结果表明:围压越大,混凝土试样破坏时,其峰值应力与峰值应力对应的轴向应变越大,破坏形式由张拉破坏向剪切破坏过渡;峰值应力前,混凝土试样主要以弹性应变能储存为主,峰值应力对应的输入能密度和耗散能密度均随围压的增大而增大,且均与围压满足指数函数关系,其形状改变系数FX与轴向应力呈正比关系,体积改变系数FV与轴向应力呈反比关系;达到峰值应力时,体积改变系数FV小于形状改变系数FX;峰值应力后,主要以弹性应变能释放为主,并随着混凝土试样的破坏转化为各种形式的能量耗散。研究结果可为今后从能量角度研究高强混凝土本构关系提供有益参考。  相似文献   

4.
为研究初始围压对煤岩力学特性的影响,以王庄煤矿9105工作面煤体为研究对象,通过HC-SPT-100型高压三轴试验机、HC-U7型非金属超声波探测仪、4K科研相机等仪器,利用数字图像测量技术开展不同初始围压下原煤试件加载试验,探究不同围压对煤体弹性模量、峰值应变、残余应力和破坏裂隙的影响规律,研究结果表明:弹性模量、峰值应变和残余应力随围压的增大而增大;随围压的增大各峰值应变增长速率不同,轴向峰值应变增长速率最快,体峰值应变增长速率次之,径向峰值应变增长速率最慢;不同围压加载破坏下煤体裂隙特征明显,主要以斜交裂隙为主;采用Jaeger法求得不同围压下煤岩体破坏临界强度值与试验值比较误差较小,符合Jaeger单结构面理论.  相似文献   

5.
为了明确岩石破坏的能量演化特性,结合单轴实验和颗粒流程序获得花岗岩的细观力学参数,进行不同应力状态的花岗岩实验,研究不同围压下花岗岩破坏过程的能量演化机理并推导能量屈服准则。获得以下主要结论:花岗岩破坏过程中低围压下内部损伤出现较早而高围压较晚,表明低围压花岗岩内部损伤是渐进发展过程,而高围压下内部损伤一旦出现便快速发展破坏;高围压花岗岩峰值前一定应变范围弹性应变能基本保持不变,吸收的能量全部转化为耗散能,表明高围压破坏时花岗岩内部损伤程度严重;弹性应变能经历不断积累并达到弹性储能极限而后减小的变化过程,而弹性储能极限与围压之间存在线性变化规律,因此高围压下岩体开挖卸荷时极易诱发大量弹性应变能的急剧释放,引起围岩失稳甚至发生岩爆;花岗岩峰值破坏时的能量比与围压无关,为一定值;基于能量原理导出了能量屈服准则,该准则包含岩性参数和所有主应力,能够综合反映岩石破坏影响因素。  相似文献   

6.
针对混凝土材料在冲击荷载作用下能量耗散和破碎程度关联性难确定的问题,采用分离式霍普金森压杆(SHPB)完成了混凝土试块冲击试验,通过对冲击后碎块的筛分试验和应力波传播过程中应变的测试,得到了试块的能量耗散规律和破碎特征。结果表明,(1) 入射应力波的加载时间约为380 μs,入射能、反射能和吸收能随冲击气压的增大而增大;同一气压下,反射能最早达到平衡; (2) 平均应变率越大,入射能和吸收能也越大;当平均应变率为300/s左右时,能量利用率为最低值; (3) 随着入射能的增加,吸收能的增长率越来越大,当入射能达到2100 J时,吸收能近乎线性增长; (4) 随冲击气压增大,试样由拉裂破坏逐渐转移为压碎破坏,且随着材料吸收能的增大,平均破碎尺寸越来越小。当吸收能大于700 J时,吸收能对试样的平均破碎尺寸减小的影响较小。  相似文献   

7.
利用改进的分离式霍普金森压杆(SHPB)系统,对花岗岩进行多次循环冲击压缩试验,并结合岩石声发射监测研究花岗岩在动态冲击下的累计损伤特性。利用超动态应变仪获取的波形信号分析试样中的纵波通过时间,进而计算岩石的应力波波速,并利用花岗岩应力波波速的变化来表征试样在循环冲击过程中的损伤特性。通过分析试样每次加载过程中的能量变化,发现多次冲击加载过程中的岩石损伤量变化程度与试样在单次加载过程中的吸收能大小有关,试样的吸收能越大,花岗岩冲击后的损伤变化量越大。花岗岩在多次冲击加载过程中的动态抗压强度随着冲击次数的增多而减小,但随加载应变率的增大而增大。基于冲击加载过程中的应力时程曲线及声发射信号特征,发现声发射事件峰值计数随着加载次数的增多而增大,表明花岗岩在多次冲击过程中新生裂纹在逐渐增多,花岗岩在每次加载过程中的声发射事件峰值点位于试样应力峰值点附近,且其在动态冲击下的声发射事件具有突发性,前兆信息不明显的特点。  相似文献   

8.
高温工程建设与隧道火灾修复中,岩石高温损伤会导致工程围岩承载力降低,严重影响围岩施工稳定性与灾后修复质量.为了揭示高温损伤岩石力学性质,以100~600℃热处理灰岩作为研究对象开展了单轴压缩试验,分析了岩石物理参数及力学行为随温度的变化规律.基于应力-应变关系,从能量吸收、储存、释放角度揭示了单轴压缩下灰岩能量演化规律.定义了岩石储能参数,以表征热处理灰岩的储能、耗能性质的温度敏感性.指出:热处理灰岩的高温损伤阈值温度为100℃,微观损伤表现为晶体胶结质量降低与新增裂隙、溶蚀孔隙发育.伴随热处理温度升高,灰岩宏观受压破裂模式由劈裂破坏向X状共轭斜面剪切破坏演变,初始压密阶段延长、线弹性变形阶段滞后现象趋于显著,灰岩的峰值强度、弹性模量、储能极限、储能效率、储能-耗散比均先增大后减小,脆性指标非线性增大.  相似文献   

9.
利用SHT4305伺服压力机系统,对黏土岩试样分别在0.1MPa/s、0.3MPa/s、0.5MPa/s、0.7MPa/s、0.9MPa/s的加载速率和25℃、55℃、85℃、115℃、145℃的环境温度下实施单轴压缩试验,分析了不同加载速率和不同环境温度对黏土岩的峰值强度、弹性模量、应变状态、破裂形式、反应过程以及变化机制的影响。研究发现,黏土岩试样在不同加载速率和环境温度作用下,破坏过程经历压密、弹性、塑性、破坏四个阶段,其中塑性阶段差异化明显。黏土岩峰值强度与加载速率近似线性相关;在环境温度的作用下,黏土岩峰值强度与弹性模量随温度的增加呈现出先增大后减小的趋势。上述研究结果对高放核废物处置库选址等领域备选具有重要的理论意义和参考价值。  相似文献   

10.
煤矿冲击地压主要发生在巷道中,其主要原因之一是巷道围岩积聚了大量的弹性能。为得出矩形巷道围岩弹性变形能积聚特征,降低巷道支护成本,推导了巷道冲击破坏失稳能量准则,并建立了矩形巷道围岩能量积聚计算模型,理论分析了采深、巷道断面尺寸和煤层厚度对矩形巷道围岩能量积聚影响规律,得出:矩形巷道积聚的弹性能随采深的增加而增大,采深越深,巷道积聚的弹性能增长速率越快。巷道围岩积聚能量随巷道断面尺寸增加而增大。当煤层厚度小于巷道影响范围时,巷道积聚能量随煤层厚度增加而增大。在实际工程中,尽可能减小巷道断面尺寸,尽可能沿顶、底板布置巷道。研究结果为冲击地压巷道布置和降低巷道支护成本提供了理论依据。  相似文献   

11.
采用相似材料模拟实验方法并借助SHPB(split Hopkinson pressure bar)实验系统,探究应变率及节理倾角对节理岩石动态力学性状的影响,包括应力应变曲线特征、破坏模式、能量传递及耗散规律。该实验结果表明:应变率升高,动态弹性模量增大,试件破碎块度变小,完整试件裂纹缺陷沿着平行于压应力方向扩展;节理角度越大,峰值强度越低,但当应变率升高到一定程度,节理角度对岩石破坏形态的影响不再明显;不同试件的入射能、反射能、透射能和耗散能均随应变率升高呈非线性增加,含倾斜角度节理试件的能量耗散率随应变率的变化幅度明显大于完整试件。  相似文献   

12.
煤矿冲击地压主要发生在巷道中,其主要原因之一是巷道围岩积聚了大量的弹性能。为得出矩形巷道围岩弹性变形能积聚特征,降低巷道支护成本,推导了巷道冲击破坏失稳能量准则,并建立了矩形巷道围岩能量积聚计算模型,理论分析了采深、巷道断面尺寸和煤层厚度对矩形巷道围岩能量积聚影响规律,得出:矩形巷道积聚的弹性能随采深的增加而增大,采深越深,巷道积聚的弹性能增长速率越快。巷道围岩积聚能量随巷道断面尺寸增加而增大。当煤层厚度小于巷道影响范围时,巷道积聚能量随煤层厚度增加而增大。在实际工程中,尽可能减小巷道断面尺寸,尽可能沿顶、底板布置巷道。研究结果为冲击地压巷道布置和降低巷道支护成本提供了理论依据。  相似文献   

13.
为研究不同化学溶液对砂岩力学性质及能量特征的影响,采用不同的水化学溶液对砂岩试样进行腐蚀,利用WDT-1500多功能材料试验机对化学腐蚀后饱和状态与自然状态的试样进行常规三轴压缩试验。试验结果表明:化学腐蚀后砂岩试样的强度及其抗变形能力呈现不同程度的劣化;化学腐蚀后砂岩试样的峰值应变小于相同围压下自然状态试样的峰值应变,与单轴压缩条件下不同,这可能是由于围压和化学溶液共同作用的结果;砂岩试样的似软化系数与围压之间呈现负相关性,同时,其降低速率随着围压的增加而降低。砂岩试样峰值前吸收的能量绝大部分是以可释放弹性应变能Ue形式储存下来的,而化学腐蚀后砂岩试样以Ue形式储存下来的能量占其总吸收应变能的百分比却有所下降;同时,围压与试样的可释放应变能/应变能比值之间呈负相关性,而与耗散能/应变能比值存在正相关性;岩石脆性指标修正值呈现不同程度的增加,试样的脆性减弱延性增强,即塑性变形增加,塑性变形与耗散能之间具有很好的线性特征。溶液的pH值、浓度和化学成分对砂岩试样峰值处各部分应变能的影响显著。  相似文献   

14.
对不同加载速率下的玄武岩展开了三点弯断裂试验研究,探讨了荷载-位移曲线变化规律及裂纹扩展机理,分析了试样断裂面粗糙度系数随加载速率及开裂荷载的变化关系。结果发现:当加载速率在0.005~5mm/s范围内增加时,试样的断裂峰值荷载有增大趋势,而最大位移有不同程度减小,荷载-位移曲线的弹性阶段明显突出,上凹阶段与裂纹失稳扩展阶段有所隐退。裂缝扩展高度一定时,开裂荷载随加载速率的增加而增大,且断裂面粗糙度系数与加载速率呈显著的对数函数递减趋势;而加载速率一定时,开裂荷载随裂缝扩展高度的增加而增大。试样不同高度处的开裂荷载与断裂面粗糙度系数呈明显的幂函数递减关系。  相似文献   

15.
为研究饱水对砂岩力学参数和能量特征的影响,利用RMT-150B岩石力学系统对煤层顶板砂岩自然和饱水试样进行单轴压缩试验。试验结果表明:饱水对砂岩试样的强度和变形参数均有不同程度的影响,软化系数为0.79,弹性模量降幅为5.25%,变形模量降幅为5.92%;饱水后砂岩试样峰值前吸收能量、可释放弹性能和耗散能均有不同程度降低,吸收能量降幅36.8%,可释放弹性能降幅为34.4%,耗散能降幅为57.7%;饱水后砂岩储蓄能量的能力有较大减弱,脆性减弱,塑性明显增强;饱水砂岩试样压缩过程中积蓄可释放能难以使试样滑移破坏,仍需要吸收部分能量使试样逐步失稳破坏;饱水对砂岩试样压缩过程吸收能量、可释放能量比例关系的影响较小,而对耗散能比例关系的影响较大;自然状态下砂岩试样峰值前相同应变条件下吸收能量、可释放能均明显高于饱水试样对应能量值;深部巷道位置确定和支护设计时应充分考虑水对巷道围岩弱化的影响,对于完整坚硬围岩采用高压注水软化可有效防止冲击地压发生和减缓灾害程度。  相似文献   

16.
利用分离式霍普金森压杆(SHPB)实验装置和INSTRON1346液压伺服试验机分别对直径为50mm,长径比为0.5,0.6,0.8,1.0,1.2,1.6,2.0的花岗岩试样分别进行水平冲击试验和单轴压缩试验,研究岩石试样在动静态压缩下的长径比效应。结果表明:动态冲击试验中,长径比对试样两端的应力平衡状态有显著影响。随着试样长径比的增大(L/D1.2),应力均匀化条件难以得到满足。试样的SHPB冲击破坏模式具有显著的长径比效应,随着长径比的增大,试样破碎程度降低,破坏模式由轴向劈裂破坏向轴向劈裂和层裂拉伸复合型破坏模式转变。在同应变率水平下,岩石的动态抗压强度随试样长径比的减小而减小(当L/D1.2时),这与静载作用下岩石单轴抗压强度随长径比的减小而增大的变化规律有明显区别。对岩石类材料来说,长径比的变化对静态抗压强度的影响程度要高于对动态抗压强度的影响,主要是因为静载试验下加载板和试样之间的作用时间长,而动载作用时间很短,导致小长径比试样静载下具有明显的端部效应,从而得到相对更高的名义单轴抗压强度。  相似文献   

17.
为了研究裂隙类岩石材料在单轴压缩和蠕变条件下的力学性质及裂纹扩展规律,通过预埋铁片的方法制作出含不同倾角的单裂隙类岩石试件,建立贯通裂隙类岩石单轴压缩强度模型,分析破坏形式。研究表明,预制裂隙倾角对类岩石试件峰值强度的影响显著,裂纹倾角越小,单轴抗压强度越低,即倾角为0°时单轴抗压强度为6.98MPa,90°时为10.85MPa,呈单调递增的趋势。建立裂隙面模型,分析类岩石试件的破坏形式,大致为两类:一类是通过预制裂隙拉剪破坏;另一类是通过裂隙的拉伸破坏。蠕变速率随着裂隙倾角的增大先增大后减小,在90°时的蠕变速率最低,在30°时蠕变速率最高。  相似文献   

18.
为分析岩石塑性变形与损伤的关系,在定义岩石的初始损伤和临界损伤,提出塑性体积应变分析方法,从而以塑性体积应变为损伤变量,采用归一化方法建立岩石的损伤本构模型。采用递增循环加载实验确定岩石损伤本构模型中的弹性卸载模量和弹性应变比例系数两个参数。通过实验和理论分析得出:当荷载较小时,普通单轴压缩状态下岩石损伤随荷载的增加具有减小趋势,荷载超过一定数值后,岩石损伤才开始增加;单轴递增循环压缩状态下当循环荷载大于约35%峰值强度后,卸载后岩石的损伤具有增加的趋势,小于该荷载之前具有减小的趋势。整个加载过程的理论应力-应变曲线能很好地与实验结果相吻合,在循环加载区间理论结果还能体现出岩石实验结果中的回滞环。  相似文献   

19.
借鉴岩石脆性指标的评价方法,依据峰值抗压强度和残余抗压强度对混凝土脆性指标进行了计算.讨论了粗骨料粒径和试样形状对混凝土脆性指标的影响,分析了抗压强度、峰值应变、单位体积吸收能、破碎分形维数与脆性指标的关联.结果表明:棱柱体试样的脆性指标均比同粒径的圆柱体试样脆性指标高;棱柱体试样与圆柱体试样的脆性指标均随粗骨料粒径的增大、抗压强度的降低而呈增大趋势;棱柱体试样与圆柱体试样的脆性指标均随峰值应变的减小、单位体积吸收能的减小和破碎分形维数的减小而增大.  相似文献   

20.
探讨高轴压和围压共同作用下频繁冲击扰动试验过程中伴随主要能量的种类,并推演冲击扰动前后弹性能、塑性能等能量的计算公式;采用预加载围压、高轴压、0.5 MPa冲击气压模拟深部岩体承受的水平应力、垂直高应力及爆破开挖扰动的影响开展动力学试验,并基于试验结果分析含铜蛇纹岩的动力学特征及能量演化规律。研究结果表明:含铜蛇纹岩能承受的扰动冲击次数随轴压增大而减小,随围压增大而增大,且动态峰值应力随扰动冲击次数增加而减小;随扰动冲击次数的增加,岩样伴随的弹性能先增大后趋于减小,伴随的塑性能呈增大的趋势发展,反射能和入射能的比值与透射能和入射能比值的变化规律相反,前者呈增大趋势,后者呈减小趋势;单位体积吸(释)能随扰动冲击次数的增加呈下凸曲线趋势变化,其均值随围压增大先减小后增大,随轴压增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号