首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 390 毫秒
1.
综合考虑宏细观缺陷的岩体动态损伤本构模型   总被引:1,自引:0,他引:1  
针对节理岩体同时含有节理、裂隙等宏观缺陷及微裂隙、微孔洞等细观缺陷的客观事实, 提出了在节理岩体动态损伤本构模型中应同时考虑宏细观缺陷的观点。为此, 首先对基于细观动态断裂机理的经典岩石动态损伤本构模型—TCK(Taylor-Chen-Kuszmaul)模型进行了阐述, 其次基于Lemaitre等效应变假设推导了综合考虑宏细观缺陷的复合损伤变量(张量), 进而在此基础上建立了相应的节理岩体动态损伤本构模型, 并利用该模型讨论了载荷应变率及节理条数对岩体动态力学特性的影响规律。结果表明, 在不同载荷应变率下试件在变形初始阶段是重合的, 而后随着应变的增加, 试件峰值强度、峰值应变及总应变均随载荷应变率的增加而增加; 随着节理条数的增加, 试件峰值强度逐渐降低, 但降低趋势逐渐变缓并趋于某一定值。上述研究结论与目前的理论及实验研究结果的基本规律是一致的, 说明了本模型的合理性。  相似文献   

2.
地下岩体工程爆破开挖中,距爆源不同距离处岩体承受的地应力和动载荷大小不同,从动载荷的角度表征岩石动态破坏结果与工程实际更吻合。为研究动载荷和地应力大小对岩体破碎和能量耗散特性的影响,利用动静组合加载试验装置,分别设置7个冲击速度和轴向静应力等级,对红砂岩试件进行冲击试验。根据试件的破碎状况,分析不同静应力工况下冲击速度对岩石破坏模式和机理的影响。计算不同工况下的应力波能量值,研究冲击速度和轴向静应力对岩石能耗特性的影响。对破坏试件进行筛分试验,研究岩石破碎分形维数随冲击速度和轴向静应力的变化关系。结果表明,随着冲击速度的增大,试件的破坏程度逐渐加大。无轴压时岩石试件破坏后整体仍是一个圆柱体,属于张拉破坏;有轴压时岩石试件宏观破坏后呈沙漏状,属于拉剪破坏。岩石耗散能随冲击速度的升高呈二次函数关系递增;轴向静应力越高,递增幅度越小。随着冲击速度的升高,岩石分形维数由零逐渐增加;随着轴向静应力的升高,分形维数由零转为大于零的临界冲击速度先升高后降低。  相似文献   

3.
采用分离式霍普金森压杆(SHPB)试验方法对粗骨料取代率为0%、30%、50%和100%的再生混凝土进行冲击试验,研究了应力-应变关系曲线、动态抗压强度、动态弹性模量以及破坏形态受应变率影响的变化规律。试验表明,应力-应变关系曲线开始段呈线性关系,随应变率的增大,线性段斜率增大,持续范围扩大,峰值应力变大;峰值应力具有率敏性,随应变率增大,峰值应力不断增加,取代率对峰值应力的影响差别不明显;动态弹性模量也具有率敏性,呈正相关关系,取代率不同,其率敏性程度有所差异;随着应变率增大,试件破坏程度随之加剧,从完整无裂缝到瞬间崩裂成碎块。  相似文献   

4.
为研究实时高温作用对花岗岩冲击力学特性的影响,以川藏铁路色季拉山施工区域加里东期花岗岩为研究对象,利用分离式霍普金森杆(SHPB)及同步箱式电阻炉,对20~800 ℃实时高温下的花岗岩试件进行冲击压缩试验,分析高温作用及加载应变率对试件破碎特征、动态抗压强度及能量吸收情况的影响,基于粉晶X射线衍射分析矿物成分变化与花岗岩动力学强度的内在关联。研究表明:20~400 ℃高温试件以脆性劈裂破坏为主,碎片形态呈纺锤形,两端尖锐,而600 ℃高温试件以塑性破坏为主,形状趋于圆钝;试件峰值应力随温度升高具有先增大后减小的变化趋势,200 ℃时达到强度阈值,随后持续降低;单位体积岩石耗散能与加载应变率呈线性正相关关系,与温度呈二次函数关系,与峰值应力呈指数关系,拟合效果良好;石英、云母和长石三种主要矿物成分的含量波动、相态变化等因素共同导致花岗岩动力学强度在200 ℃后逐步劣化。  相似文献   

5.
杜艳红  刘向峰  陈峰 《力学季刊》2019,40(4):824-833
二郎山特长高速公路隧道断裂带较多,受此影响,隧道开挖后岩爆灾害十分严重.从此隧道中取样制备成含天然贯通节理试件,进行常规单轴压缩室内试验,获取基本力学参数和破坏模式.本文以室内实验结果为依据,确定数值试验时所采用的岩石和节理的力学参数,利用RFPA软件开展数值试验,研究了不同围压同轴向荷载下卸掉围压诱发岩石失稳破坏机理.试验结果表明,五种不同围压(5、10、15、20、25 MPa)卸载后应力-应变曲线均呈“断崖式”跌落,试样均突然破坏,与现场岩爆情况吻合;受贯通节理影响,不同围压试样的具体破坏形态、声发射数量最大值出现时刻有所差异;在卸载阶段五种试样声发射累积数量都突然急剧增大.  相似文献   

6.
袁璞  马芹永 《爆炸与冲击》2017,37(5):929-936
为研究短圆柱体岩石试件端面不平行对岩石动力学特性测试结果的影响,采用有限元分析软件LS-DYNA对9种端面不平行度和5种杨氏模量的岩石试件开展SHPB(split Hopkinson pressure bar)试验数值模拟,对岩石选用HJC(Holmquist-Johnson-Cook)本构模型。数值模拟结果表明,当端面不平行度在0.40%以内时,端面不平行对动态应力测试结果的影响可忽略不计;但对动态应变测试结果的影响较大。当杨氏模量一定时,平均应变率测试误差和峰值应变测试误差随端面不平行度增大呈线性增大;当端面不平行度一定时,平均应变率测试误差和峰值应变测试误差随杨氏模量增大也呈线性增大。对数值模拟得到的平均应变率测试误差和峰值应变测试误差实施二元线性回归分析,提出了SHPB试验中端面不平行岩石试件平均应变率和峰值应变的修正公式。  相似文献   

7.
提出在岩体动态损伤本构模型中应同时考虑宏、细观缺陷;基于能量原理和断裂力学理论推导得出了同时考虑节理几何及力学特征的宏观损伤变量(张量)的计算公式;基于综合考虑宏、细观缺陷的复合损伤变量(张量)及完整岩石动态损伤Taylor-Chen-Kuszmaul(TCK)模型,建立了相应的单轴压缩下节理岩体动态损伤本构模型;利用该模型讨论了节理内摩擦角及节理长度对岩体动态力学特性的影响规律。研究表明,试件动态峰值强度随着节理内摩擦角的增大而增大,随着节理长度的增加而减小。  相似文献   

8.
采用分离式霍普金森压杆装置,测试了高应变率下ZrB2-20%SiC陶瓷复合材料的动态压缩力学性能,应变率范围为900s^-1~3000s^-1。结果表明:ZrB2-20%SiC陶瓷复合材料的动态压缩强度与临界应变均随应变率的增大而增加,2950s^-1时压缩强度与临界应变比981s^-1时分别增大了88.72%和148.85%;应变率对ZrB2-20%SiC陶瓷复合材料的动态压缩应力-应变曲线与破坏机理影响显著,应变率为1134s^-1时,ZrB2-20%SiC陶瓷复合材料破坏模式以裂纹扩展为主,应变率为2861s^-1时,多裂纹扩展为该材料的主要破坏机理;应变率越高,试件的损伤程度越大,压缩试件碎片尺寸越小,压缩应力-应变曲线的非线性越明显。  相似文献   

9.
利用普通SHPB实验系统、双试件SHPB实验系统,对一特种钢材进行了不同应变率历史的动态压缩实验,获得了不同应变率历史所对应的应力应变曲线。通过量化平均应变率相同的情况下不同应变率历史所对应的应力应变曲线的差别,以及量化应变率历史的恒定程度,初步分析了应变率历史对应力应变曲线的影响。研究结果表明:特别是在较高平均应变率下,应变率历史对试件材料的应力应变曲线有明显的影响,在材料动态本构关系研究中应当考虑应变率历史的影响。  相似文献   

10.
断续节理将对工程岩体的强度及变形等力学特性产生显著影响,损伤力学中视节理为岩体的一种宏观损伤,因而采用损伤张量来刻画其对岩体的影响。目前学术界提出了用节理的几何、强度及变形等3类参数来描述节理的物理力学性质,而目前的岩体损伤张量计算方法都只涉及前2类参数,均没有涉及其变形参数即法向及切向刚度。为此,在前人研究的基础上,基于断裂及损伤理论提出了考虑节理法向及切向刚度的单轴压缩下单条断续节理引起的损伤张量计算公式,进而通过考虑节理间相互作用给出了单组单排或多排节理岩体损伤张量计算公式。其次,以岩石细观动态损伤模型为基础,结合宏细观损伤耦合观点提出了一个能够同时考虑节理几何、强度及变形参数的断续节理岩体动态损伤本构模型。最后,利用该模型讨论了节理参数及载荷应变率等对岩体动态力学特性的影响,认为节理长度减小及摩擦角增大将导致岩体动态峰值强度及弹性模量增大;岩体动态峰值强度及弹性模量则随着节理法向及切向刚度的增大分别减小或增大;而当节理法向及切向刚度按照同一比例增大时,岩体动态峰值强度及弹性模量则是增大的。岩体动态峰值强度与载荷应变率呈正相关。  相似文献   

11.
针对白鹤滩水电站左岸坝基河谷底部边坡岩体爆破开挖,采用现场岩体位移监测、锚索轴力监测及数值模拟的手段,研究了爆破开挖扰动下锚固节理岩质边坡的位移突变特征及其能量机理。研究结果表明:对于深切河谷底部高地应力边坡岩体爆破开挖,爆炸荷载挤压及地应力作用下,岩体所积聚的应变能快速释放,导致了节理岩质边坡的位移突变,突变位移包括节理张开位移和岩体回弹位移两部分;地应力水平越高、岩体弹性模量越低,总的突变位移量越大;预应力锚索主要通过抑制节理张开位移来控制边坡岩体的位移突变,锚索预应力等级越高,其吸能和释能速率越高,对节理岩体位移突变的控制效果越好,当锚索的预应力等级高到一定程度后,节理岩体的突变位移不再随锚索预应力等级的升高而显著减小。  相似文献   

12.
This paper presents the experimental and theoretical investigation of property of stress wave propagation in jointed rocks by means of SHPB technique and fractal geometry method. Our aim focuses on the influence of the rough joint surface configuration on stress wave propagation. The comparison of behavior of reflection and transmission waves, deformation and energy dissipation of a rough joint surface characterized by its fractal feature with that of a smooth plane joint has been carried out. It has shown that the rough joint surface distinctly affects the stress wave propagation and energy dissipation in the jointed rocks. The rougher the joint surface was, the more permanent deformation occurred and the more attenuation stress wave took place as well. A nonlinear relationship between the normalized energy dissipation ratio WJ/WI of the jointed rock and the joint roughness in terms of the fractal dimension has been formulated. It seems that the ratio WJ/WI, presenting how much energy has been dissipated in the joint, nonlinearly increased with the increment of the fractal dimension D of the jointed surface. The ratio WJ/WI of a roughly jointed rock, however, tends to be the same as that of a smoothly jointed rock if the fractal dimension is less than a critical value Dc = 2.20. The energy dissipation ratio at the critical point Dc seem to be a constant, not dependent of rock type but fractal joint configuration.  相似文献   

13.
为研究不同化学溶液对砂岩力学性质及能量特征的影响,采用不同的水化学溶液对砂岩试样进行腐蚀,利用WDT-1500多功能材料试验机对化学腐蚀后饱和状态与自然状态的试样进行常规三轴压缩试验。试验结果表明:化学腐蚀后砂岩试样的强度及其抗变形能力呈现不同程度的劣化;化学腐蚀后砂岩试样的峰值应变小于相同围压下自然状态试样的峰值应变,与单轴压缩条件下不同,这可能是由于围压和化学溶液共同作用的结果;砂岩试样的似软化系数与围压之间呈现负相关性,同时,其降低速率随着围压的增加而降低。砂岩试样峰值前吸收的能量绝大部分是以可释放弹性应变能Ue形式储存下来的,而化学腐蚀后砂岩试样以Ue形式储存下来的能量占其总吸收应变能的百分比却有所下降;同时,围压与试样的可释放应变能/应变能比值之间呈负相关性,而与耗散能/应变能比值存在正相关性;岩石脆性指标修正值呈现不同程度的增加,试样的脆性减弱延性增强,即塑性变形增加,塑性变形与耗散能之间具有很好的线性特征。溶液的pH值、浓度和化学成分对砂岩试样峰值处各部分应变能的影响显著。  相似文献   

14.
A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of rock-like material, a set of micro-parameters in PFC2D that reflected the macro-mechanical behavior of rock-like materials were obtained. And then PFC2D was used to simulate Brazilian splitting test for jointed rock mass specimens and specimen containing a central straight notch. The effect of joint angle and notch angle on the tensile strength and failure mode of jointed rock specimens was detailed analyzed. In order to reveal the meso-mechanical mechanism of crack coalescence, displacement trend lines were applied to analyze the displacement evolution during the crack initiation and propagation. The investigated conclusions can be described as follows. (1) The tensile strength of jointed rock mass disc specimen is dependent to the joint angle. As the joint angle increases, the tensile strength of jointed rock specimen takes on a nonlinear variance. (2) The tensile strength of jointed rock mass disc specimen containing a central straight notch distributes as a function of both joint angle and notch angle. (3) Three major failure modes, i.e., pure tensile failure, shear failure and mixed tension and shear failure mode are observed in jointed rock mass disc specimens under Brazilian test. (4) The notch angle roles on crack initiation and and joint angle play important propagation characteristics of jointed rock mass disc specimen containing a central straight notch under Brazilian test.  相似文献   

15.
加载速率对岩石的力学性质以及变形破坏方式具有重要的影响。基于MTS810电液伺服材料试验系统与PCI-2声发射仪对岩样进行不同加载速率作用下的单轴压缩和声发射试验。研究结果表明:(1)在各级加载速率作用下,岩样单轴压缩应力-应变曲线大致经历了压密、弹性、屈服、破坏四个阶段。岩样峰后曲线在加载速率为0.001~0.01 mm/s时出现台阶型分段跌落状,在加载速率为0.01~0.1 mm/s时呈现光滑、陡峭的连续曲线。(2)岩样峰值强度、弹性模量随加载速率的增加而增大,与加载速率对数均呈现三次多项式拟合关系。峰值应变随加载速率的增加而减小,与加载速率对数呈现线性拟合关系。(3)随着加载速率由0.001mm/s增加至0.1mm/s,岩样吸收的总应变能 具有波动性,可释放的弹性应变能 增幅60.42%,耗散应变能 降幅 66.38%, 增幅43.33%, 降幅66.67%,岩样破裂模式由拉剪破坏逐渐向张拉劈裂破坏过渡,岩样破裂块数增多。(4)加载速率为0.001~0.1 mm/s时,岩样破坏方式有所不同,但破坏为同一类损伤过程。单轴压缩状态下,能量耗散使得岩样损伤致使强度丧失,而能量释放使得岩样宏观破裂面贯通,并向着能量释放的方向张裂或弹射破坏。  相似文献   

16.
《Comptes Rendus Mecanique》2017,345(11):779-796
In order to comprehensively investigate the effect of different joint geometries on the shear behavior of rocks, the Distinct Element Method (DEM) was utilized with a new bond contact model. A series of direct shear tests on coplanar and non-coplanar jointed rocks was simulated using the PFC2D software, which incorporates our bond contact model. Both coplanar jointed rocks with different joint persistence and non-coplanar ones with different joint inclinations were simulated and investigated numerically. The numerical results were compared and discussed with relevant laboratory tests as well as some reported numerical works. The results show that for coplanar jointed rocks, the peak shear stress decreases nonlinearly with the joint persistence, and the failure process can be divided into four stages: elastic shearing phase, crack propagation, failure of rock bridges, and residual phase. For non-coplanar jointed rocks, as the absolute value of the inclination angle of the rock joints increases, its shear strength increases, changing the failure patterns and the length of new fractures between existing cracks. When the absolute value increases from 15° to 30°, the average shear capacity increases the most as 39%, while the shear capacity increases the least as 2.9% when the absolute value changes from 45° to 60°. There is a good consistency of the failure patterns obtained from experiments and numerical tests. All these demonstrate that the DEM can be further applied to rock mechanics and practical rock engineering with confidence in the future.  相似文献   

17.
不同应变率下煤岩破坏特征及其本构模型   总被引:1,自引:0,他引:1  
郑钰  施浩然  刘晓辉  张文举 《爆炸与冲击》2021,41(5):053103-1-053103-13
利用直径50 mm的分离式霍普金森压杆,对煤岩展开20~100 s?1动态应变率下的单轴冲击压缩试验,结合高速摄影分析其变形破坏特征,并建立基于Weibull统计分布和Drucker-Prager破坏准则的煤岩动态强度型统计损伤本构模型。试验结果表明:(1)煤岩动态应力-应变曲线存在明显的非线性特征,随应变率升高,动态抗压强度与弹性模量均呈线性增长且增幅显著,破坏形态由低应变率下的轴向劈裂破坏向高应变率下的压碎破坏过渡;(2)在动态应变率20~100 s?1下,煤岩破坏后碎块具有明显的分形特性,破碎块度分维值为1.9~2.2,且随着应变率的升高,煤岩破碎程度增大,碎块块度减小;(3)基于Weibull分布参数F0、m和应变率的关系,修正煤岩的本构模型,并与试验结果进行对比,验证该模型的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号