首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced. A generalized Maxwell model with the fractional calculus was considered. Exact solutions of some unsteady flows of a viscoelastic fluid between two parallel plates are obtained by using the theory of Laplace transform and Fourier transform for fractional calculus. The flows generated by impulsively started motions of one of the plates are examined. The flows generated by periodic oscillations of one of the plates are also studied.  相似文献   

2.
The exact solutions are obtained for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. The fractional calculus in the constitutive relationship of a non-Newtonian fluid is introduced. We construct the solutions by means of Fourier transform and the discrete Laplace transform of the sequential derivatives and the double finite Fourier transform. The solutions for Newtonian fluid between two infinite parallel plates appear as limiting cases of our solutions.  相似文献   

3.
The fractional calculus approach is introduced into the seepage mechanics. A three-dimensional relaxation model of viscoelastic fluid is built. The models based on four boundary conditions of exact solution in Laplace space for some unsteady flows in an infinite reservoir is obtained by using the Laplace transform and Fourier sine and cosine integral transform. The pressure transient behavior of non-Newtonian viscoelastic fluid is studied by using Stehfest method of the numerical Laplace transform inversion and Gauss–Laguerre numerical integral formulae. The viscoelastic fluid is very sensitive to the order of the fractional derivative. The change rules of pressure are discussed when the parameters of the models change. The plots of type pressure curves are given, and the results can be provided to theoretical basis and well-test method for oil field.  相似文献   

4.
The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced. Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus. The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates. In addition, the solutions of the shear stresses at the plates are also determined. The project supported by the National Natural Science Foundation of China (10372007, 10002003) and CNPC Innovation Fund  相似文献   

5.
Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials.  相似文献   

6.
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 < α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.  相似文献   

7.
The start-up process of Stokes' second problem of a viscoelastic material with fractional element is studied. The fluid above an infinite flat plane is set in motion by a sudden acceleration of the plate to steady oscillation. Exact solutions are obtained by using Laplace transform and Fourier transform. It is found that the relationship between the first peak value and the one of equal-amplitude oscillations depends on the distance from the plate. The amplitude decreases for increasing frequency and increasing distance.  相似文献   

8.
The unsteady flow of viscoelastic fluid with the fractional derivative Maxwell model (FDMM) in a channel is studied in this note. The exact solutions are obtained for an arbitrary pressure gradient by means of the finite Fourier cosine transform and the Laplace transform. Two special cases of pressure gradient are discussed. Some results given by the classical models with integer-order are included in this note.  相似文献   

9.
This work is concerned with applying the fractional calculus approach to the magnetohydrodynamic (MHD) pipe flow of a fractional generalized Burgers’ fluid in a porous space by using modified Darcy’s relationship. The fluid is electrically conducting in the presence of a constant applied magnetic field in the transverse direction. Exact solution for the velocity distribution is developed with the help of Fourier transform for fractional calculus. The solutions for a Navier–Stokes, second grade, Maxwell, Oldroyd-B and Burgers’ fluids appear as the limiting cases of the present analysis.  相似文献   

10.
The three techniques of s-to-z transform, power series expansion (PSE) and signal modelling are combined to develop a new procedure for efficiently computing the fractional order derivatives and integrals of discrete-time signals. A mapping function between the s-plane and the z-plane is first chosen, and then a PSE of this mapping function raised to fractional order is performed to get the desired infinite impulse response of the ideal digital fractional operator. Finally, the desired impulse response is modelled as the impulse response of a linear invariant system whose rational transfer function is determined using deterministic signal modelling techniques. Three non-iterative techniques, namely Padé, Prony and Shanks’ methods have been considered in this paper. Using Al-Alaoui’s rule as s-to-z transform, computation examples show that both Prony and Shanks’ method can achieve more accurate fractional differentiation and integration than Padé method which is equivalent to continued fraction expansion technique.  相似文献   

11.
12.
The start-up process of Stokes' second problem ofa viscoelastic material with fractional element is studied. Thefluid above an infinite flat plane is set in motion by a suddenacceleration of the plate to steady oscillation. Exact solutionsare obtained by using Laplace transform and Fourier transform.It is found that the relationship between the first peakvalue and the one of equal-amplitude oscillations dependson the distance from the plate. The amplitude decreases forincreasing frequency and increasing...  相似文献   

13.
This paper presents a fast method for the generation of non‐Fickian particle paths within a particle‐tracking pollutant diffusion model based on a Fourier spectral representation of fractional Brownian motion (fBm), a generalization of ordinary Brownian motion. Correlated diffusive components in a particle‐tracking algorithm are modelled using fBm increments that have long‐range correlations over numerous spatial and/or temporal scales; hence producing non‐Fickian diffusion. A fast algorithm to generate fBm and its increment by using its power spectral density S(f) in a fast Fourier transform algorithm is given. A general equation for the scaling of fBm within a velocity flow field with simple linear shear is presented. An initial numerical study of the nature of fBm shear dispersion has been conducted by incorporating fBm increments into a non‐Fickian particle‐tracking algorithm. It is shown that the effect of simple (i.e. linear) shear on the diffusion process is to produce enhanced diffusive phenomena with the longitudinal spreading of the plume scaling with exponent ∼1+H, where H is the Hurst exponent used to describe fBm. Finally, a more complex shear zone at the entrance of a coastal bay model is investigated using both a traditional particle‐tracking method and the fBm‐based method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
This paper applied MDS and Fourier transform to analyze different periods of the business cycle. With such purpose, four important stock market indexes (Dow Jones, Nasdaq, NYSE, S&P500) were studied over time. The analysis under the lens of the Fourier transform showed that the indexes have characteristics similar to those of fractional noise. By the other side, the analysis under the MDS lens identified patterns in the stock markets specific to each economic expansion period. Although the identification of patterns characteristic to each expansion period is interesting to practitioners (even if only in a posteriori fashion), further research should explore the meaning of such regularities and target to find a method to estimate future crisis.  相似文献   

15.
This paper deals with the problem of magneto-thermoelastic interactions in an unbounded, perfectly conducting half-space whose surface suffers a time harmonic thermal source in the context of micropolar generalized thermoelasticity with fractional heat transfer allowing the second sound effects. The medium is assumed to be unstrained and unstressed initially and has uniform temperature. The Laplace–Fourier double transform technique has been used to solve the resulting non-dimensional coupled field equations. Expressions for displacements, stresses and temperature in the physical domain are obtained using a numerical inversion technique. The effects of fractional parameter, magnetic field and micropolarity on the physical fields are noticed and depicted graphically. For a particular model, these fields are found to be significantly affected by the above mentioned parameters. Some particular cases of interest have been deduced from the present problem. Numerical results predict finite speed of propagation for thermoelastic waves.  相似文献   

16.
17.
Lattice models with long-range interactions of power-law type are suggested as a new type of microscopic model for fractional non-local elasticity. Using the transform operation, we map the lattice equations into continuum equation with Riesz derivatives of non-integer orders. The continuum equations that are obtained from the lattice model describe fractional generalization of non-local elasticity models. Particular solutions and correspondent asymptotic of the fractional differential equations for displacement fields are suggested for the static case.  相似文献   

18.
短脉冲激光加热引起材料内部复杂的传热过程及热变形,现有的以Fourier定律或Cattaneo-Vernotte松弛方程结合弹性理论为框架建立起来热应力理论在刻画其热物理过程存在严重缺陷. 本文基于分数阶微积分理论, 以半空间为研究对象, 建立了分数阶Cattaneo热传导方程和相应的热应力方程, 给出了问题的初始条件和边界条件, 采用拉普拉斯变换方法, 给出了非高斯时间分布激光热源辐射下温度场和热应力场的解析解, 研究了短脉冲激光加热的温度场及热应力场的热物理行为. 数值计算中, 首先对理论解进行数值验证, 然后取分数阶变量$p=0.5$研究温度场和热应力场的变化特点及激光参数对温度和热应力的影响,最后数值计算分数阶参数对温度和热应力场的影响. 计算结果表明, 分数阶Cattaneo传热方程和热应力方程描述的温度和热应力任然具有波动特性,与经典的Fourier传热模型和标准的Cattaneo传热模型相比, 分数阶阶次越大, 热波波速越小, 热波波动性越明显; 反之, 则热波波速越大, 热扩散性越强.激光加热和冷却的速度越快, 温度上升和下降的速度越快, 压应力和拉应力交替变化越快, 温度变化幅值越小, 热应力幅值影响不明显.   相似文献   

19.
A dynamic problem for two equal rectangular cracks in an infinite elastic plate is considered. The two cracks are placed perpendicular to the plane surfaces of the plate. An incoming shock tensile stress is returned by the cracks. In the Laplace transform domain, the boundary conditions at the two sides of the plate are satisfied using the Fourier transform technique. The mixed boundary conditions are reduced to dual integral equations. Crack displacement is expanded in a series of functions which are zero outside of the cracks. The unknown coefficients in the series are determined by the Schmidt method. The stress intensity factors are defined in the Laplace transform domain and these are inverted using a numerical method.  相似文献   

20.
Summary  Transient stresses around two parallel cracks in an infinite elastic medium are investigated in the present paper. The shape of the cracks is assumed to be square. Incoming shock stress waves impinge upon the two cracks normal to tzheir surfaces. The mixed boundary value equations with respect to stresses and displacements are reduced to two sets of dual integral equations in the Laplace transform domain using the Fourier transform technique. These equations are solved by expanding the differences in the crack surface displacements in a double series of a function that is equal to zero outside the cracks. Unknown coefficients in the series are calculated using the Schmidt method. Stress intensity factors defined in the Laplace transform domain are inverted numerically to the physical space. Numerical calculations are carried out for transient dynamic stress intensity factors under the assumption that the shape of the upper crack is identical to that of the lower crack. Received 2 February 2000; accepted for publication 10 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号