首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
杨庆生  魏巍  马连华 《力学进展》2014,44(1):201404
本文重点评述了自然界中的典型智能软材料:聚合物胶体和水凝胶以及关节软骨的多场耦合力学问题的国内外研究现状。基于唯象热力学理论和哈密顿原理,建立了一般性的热-电-化-力学多场耦合理论。重点针对等温过程的化学-力学耦合本构关系和控制方程,通过哈密顿原理,建立了化力耦合系统的有限元列式。证明了化学-力学耦合理论架构的封闭性。通过数值算例分析了水凝胶和关节软骨的多场耦合作用。最后展望了智能软材料多场耦合研究的未来发展趋势。   相似文献   

2.
本文针对自然界中不同种类的多孔介质,评述了包含化学效应的多场耦合力学问题的国外内研究现状.介绍了研究多场耦合问题的理论架构,并基于唯象理论和热力学理论,建立了一般性的热-电-化-力学多场耦合理论,在此基础上简化为化学-力学耦合理论,利用相应的控制方程和本构关系, 给出了线性耦合系统的变分原理,并证明了化学-力学耦合理论架构的封闭性. 基于所提出的化-力耦合模型,通过数值算例解释了多孔介质中的化学-力学耦合现象.最后对多孔介质,特别是对活体生物软组织中的多场耦合研究中存在的问题进行了讨论,并展望了本领域的未来发展趋势.  相似文献   

3.
作为一种具有多场耦合特性的智能柔体材料,水凝胶的制备技术、性能表征与结构应用得到迅速发展。本文在分析水凝胶本构理论和结构设计的基础上,提出了水凝胶多场耦合计算力学的基本方法和范式,包括微观粗粒化分子动力学模拟和宏观耦合有限元方法等,计算了化学-力学耦合作用下水凝胶材料与结构的变形和应力,给出了多个数值算例与结果比较。研究指出多场耦合计算力学将成为水凝胶材料和结构分析的主要手段,并推动水凝胶等这类智柔材料的性能设计与工程应用。  相似文献   

4.
林銮  杨庆生 《力学季刊》2008,29(1):8-14
许多智能复合材料例如生物组织和聚合物胶体,都表现出多场耦合行为.目前化学-力学耦合理论属于一个比较新的领域,还不成熟.本文主要研究化学一力学耦合行为,并在ABAQUS软件中进行了数值模拟计算.应用力学平衡方程、离子扩散方程和包含力学-化学耦合因素的的本构关系椎导出了力学-化学耦合的等效积分形式,建立力学-化学耦合的有限元方程.在ABAQUS软件中开发用户单元子程序,进行数值模拟.计算结果表明:力学与化学存在着相互耦合作用,浓度变化能引起固体的变形,同样力学作用也能引起浓度重分布:由于耦合作用,固体的有效性能与扩散性质都发生了改变:力学-化学耦合作用过程实际是机械能与化学能之间能量转换过程;最终,研究体中械能与化学能达到相互平衡状态,且质量守恒.本文的理论和方法可应用于模拟生物组织、粘土等材料的力学-化学耦合行为.  相似文献   

5.
自振荡凝胶是一类由特殊振荡化学反应驱动而产生周期性变形的新型智能软材料.自振荡凝胶内部存在复杂的力学与化学的非线性耦合效应,其动力学行为特征受试样的边界约束情况、外部作用力大小与形式等力学因素和反应物浓度、催化剂类型等化学因素的显著影响,亦受试样的几何形状、外界光照强度、环境温度等其他物理因素的调控.自振荡凝胶已在力学与化学信号传播、材料结构自组装、微量物质运输、微型作动器、新型力学传感器等基础和应用领域取得众多突破性研究进展.基于相关研究,系统论述了自振荡凝胶的力-化耦合行为调控及其主要应用现状,为进一步深入研究新型智能软材料及其应用提供参考.  相似文献   

6.
在文献[1]中建立的多孔介质中化学-热-渗流-力学(CTHM)本构模型基础上,针对文献[2]建立的非饱和多孔介质中热-渗流-力学耦合分析的混合有限元方法,发展了非饱和多孔介质中混合元的化学-热-渗流-力学(CTHM)耦合本构模拟算法。采用非关联流动多重屈服准则模拟非饱和多孔介质的材料非线性行为。推导了u-pw-pa-T形式的包含了耦合率本构方程积分的向后欧拉映射算法和一致性弹塑性切线模量矩阵(单元刚度矩阵)的混合元一致性算法。本文给出了临界状态线(CSL)和状态边界面(SBS)两个屈服准则的一致性算法。数值结果显示了本文所发展的混合元耦合本构模拟算法在模拟由热、化学、力学荷载共同引起的多孔介质中化学-热-渗流-力学(CTHM)耦合行为的能力和有效性。  相似文献   

7.
化学-力学耦合理论与数值方法   总被引:4,自引:0,他引:4  
该文研究了化学场中的质量扩散与力学耦合问题,构造了化-力耦合情况下的力学本构关系与质量扩散的本构关系,并由这些本构关系和化学场、力学场的控制方程,得到化-力场耦合的有限元方程.通过数值算例,详细分析了由应力场引起的质量重分布和由化学场引起的结构变形.研究表明,力学与化学之间存在明显的相互作用,并采用有限元数值方法进行了分析.  相似文献   

8.
考虑化学作用的固体多场耦合问题涉及开放系统中多组分物质的复杂动力学过程.这些过程不仅具有不同时空尺度下的多重热力学作用机制,还会引起材料性质的不断变化.深入认识热、化学、力学相互作用下物质与能量的传递和转化方式,合理描述化学反应与固体力学行为的相互影响并建立严密的耦合理论体系,不论是对新型智能材料的功能优化设计,还是对传统材料和结构在耦合场中的性能评估与预测都至关重要,也是当代固体力学发展的一个重要方向.本文针对各领域中广泛存在的固体传热、传质、化学反应和力学行为相互耦合的问题,按照传质-变形耦合问题、反应-变形耦合问题及热-化-力完全耦合问题几种主要类型,介绍了相关连续介质理论建模和求解等方面的研究进展,重点对耦合理论建模中常涉及的几类关键问题进行了深入分析和讨论,并对今后固体热-化-力耦合问题的研究进行了展望.  相似文献   

9.
针对已建立的高温下混凝土中化学-热-水力-力学耦合过程分析的分级数学模型,发展了混凝土的化学-热-水力-力学(CTHM)耦合本构模型。在已有的Willam-Warnke弹塑性屈服准则基础上发展了考虑脱水和脱盐引起的材料损伤及化学塑性软化、塑性应变硬化/软化和吸力硬化的广义Willam-Warnke本构模型,模拟高温下混凝土的材料非线性行为。为保证全局守恒方程的Newton迭代过程的二阶收敛率,导出了非线性化学-热-水力-力学(CTHM)耦合本构模型的一致性切线模量矩阵。数值结果显示了本文所发展的化学-热-水力-力学(CTHM)耦合本构模型在模拟高温下混凝土中复杂破坏过程的能力和有效性。  相似文献   

10.
正随着现代科技的迅速发展,固体材料的服役环境愈加严苛,从而引发了力学理论和分析方法的变革。固体材料经常承受多场耦合作用,产生了如力-热耦合、力-磁-热耦合、力-电-热耦合、力-磁-电耦合、力-化耦合等问题。在实际分析中,不仅要解决这些物理场的叠加问题,还经常要考虑不同物理场之间的交互作用。各种物理场通常可通过偏微分方程来描述,求解多物理场问题的本质是联立这些偏微分方程组,且在理论上可实现任意物理场的耦合。通过求解多场耦合问题并研究材料在各物理场中的宏  相似文献   

11.
正随着现代科技的迅速发展,固体材料的服役环境愈加严苛,从而引发了力学理论和分析方法的变革。固体材料经常承受多场耦合作用,产生了如力-热耦合、力-磁-热耦合、力-电-热耦合、力-磁-电耦合、力-化耦合等问题。在实际分析中,不仅要解决这些物理场的叠加问题,还经常要考虑不同物理场之间的交互作用。各种物理场通常可通过偏微分方程来描述,求解多物理场问题的本质是联立这些偏微分  相似文献   

12.
对化学驱动的连续介质化学-力学耦合系统进行研究,从热力学定律和化学势角度出发,推导了等温过程的化学-力学耦合本构关系和控制方程,利用变分方法建立了化学-力学耦合系统的能量泛函,得到化学-力学耦合控制方程的等效积分形式和相应的有限元列式. 结合算例,对连续介质的化学-力学耦合行为进行了数值计算,数值结果反映了化学与力学系统的相互耦合作用,即浓度变化能引起介质的变形,同样力学作用也能引起浓度重分布. 从全新的角度建立了描述连续介质的化学-力学耦合行为的基本理论和数值方法,能够较好地反映一类连续介质的化学-力学耦合行为.   相似文献   

13.
宋铭  鄢之 《固体力学学报》2010,41(5):444-454
摘要:挠曲电效应是由应变梯度引起的,与尺度相关的力电耦合效应。基于Kirchhoff板假设和挠曲电理论,本文推导了温度和电压作用下的压电薄板力-电-热耦合微分控制方程,定量分析了微分控制方程中非线性项的影响,并针对四周固支压电薄板采用Ritz法求解,数值计算了压电薄板的弯曲和振动行为。在研究温度和挠曲电效应对薄板耦合特性和力学行为的影响时,本文分别考虑了材料系数不随温度变化和随温度线性变化两种情况。以PZT-5H为例,我们讨论了挠曲电和温度对压电薄板的横向位移和固有频率的影响。研究结果表明挠曲电效应对压电纳米薄板的力学行为影响很大,且具有明显的尺寸效应。此外,薄板对温度变化非常敏感。因此,可通过挠曲电效应和温度来调控压电纳米薄板的多场耦合特性和力学行为,进而优化基于压电薄板的NEMS/MEMS中传感器、作动器等电子器件的性能。  相似文献   

14.
荷载与环境共同工作下的混凝土损伤-愈合力学行为具有典型的内在湿化力多场耦合特征.本文以混凝土中CaCO3 沉淀自愈机制为例,建立了一种湿-化-力多场耦合分析模型.通过引入一组扩散和化学反应方程,对材料微观结构层次的物理化学过程进行数学建模.随后,基于连续损伤愈合力学理论,将自愈效应引入混凝土损伤本构关系,发展出混凝土湿化力耦合分析模型并进行模型验证.针对单轴拉伸混凝土试样进行多场耦合数值分析,考察了关键参数对愈合过程的作用规律以及自愈进程对混凝土材料力学行为的影响.本文的研究为混凝土在运行环境下的损伤-愈合行为以及性能演变提供了定量分析方法.  相似文献   

15.
宋铭  鄢之 《固体力学学报》2020,41(5):444-454
摘要:挠曲电效应是由应变梯度引起的,与尺度相关的力电耦合效应。基于Kirchhoff板假设和挠曲电理论,本文推导了温度和电压作用下的压电薄板力-电-热耦合微分控制方程,定量分析了微分控制方程中非线性项的影响,并针对四周固支压电薄板采用Ritz法求解,数值计算了压电薄板的弯曲和振动行为。在研究温度和挠曲电效应对薄板耦合特性和力学行为的影响时,本文分别考虑了材料系数不随温度变化和随温度线性变化两种情况。以PZT-5H为例,我们讨论了挠曲电和温度对压电薄板的横向位移和固有频率的影响。研究结果表明挠曲电效应对压电纳米薄板的力学行为影响很大,且具有明显的尺寸效应。此外,薄板对温度变化非常敏感。因此,可通过挠曲电效应和温度来调控压电纳米薄板的多场耦合特性和力学行为,进而优化基于压电薄板的NEMS/MEMS中传感器、作动器等电子器件的性能。  相似文献   

16.
水泥石良好的粘结性能和力学性能决定水泥基材料和结构的耐久性.通过试验和理论研究,发现水泥石中含钙水化物质,特别是氢氧化钙Ca(OH)_2和水化硅酸钙C-S-H在化学腐蚀作用下的流失是一个复杂的过程.假定水泥基材料为宏观均匀材料,引入考虑两种水化物不同扩散过程的化学扩散模型.提出了新的化学-力学损伤本构模型,描述水泥基材料在不同化学腐蚀下的应力应变关系.综合应用提出的水泥基材料的化学-力学损伤本构关系和化学扩散模型,可以较好地反映水泥石具有时间效应的力学特性.  相似文献   

17.
自振荡凝胶是一类由特殊振荡化学反应驱动而产生周期性变形的新型智能软材料. 该智能材料无需通过调节外界激励因素便可产生自治的交替性膨胀和收缩, 从而持续性地将化学能转化为机械能, 在工程和生物医学领域具有广阔的应用前景. 自振荡凝胶内部存在复杂的力学与化学的非线性耦合效应, 其动力学行为特征受试样的边界约束情况、外部作用力大小与形式等力学因素和反应物浓度、催化剂类型等化学因素的显著影响, 亦受试样的几何形状、外界光照强度、环境温度等其他物理因素的调控. 自振荡凝胶已在力学与化学信号传播、材料结构自组装、微量物质运输、微型作动器、新型力学传感器等基础和应用领域取得众多突破性研究进展. 基于相关研究, 系统论述了自振荡凝胶的力-- 化耦合行为调控及其主要应用现状, 为进一步深入研究新型智能软材料及其应用提供参考.   相似文献   

18.
王捷  刘锦阳 《应用力学学报》2012,29(5):501-507,624
本文研究了柔性多体系统刚-柔-热耦合动力学特性。以哈勃天文望远镜(HST)为研究对象,基于柔性多体系统动力学理论,考虑了柔性附件弹性变形引起的热辐射边界条件的变化,建立了中心刚体和太阳能毯柔性附件多体系统的刚-柔-热耦合的动力学方程。通过对热载荷作用下哈勃天文望远镜多体系统的数值仿真研究了热辐射角、阻尼系数、比热容、支撑梁、太阳能毯之间的轴向力等参数对于柔性附件热颤振的影响;并提出增加结构阻尼、减小支撑梁和太阳能毯之间的轴向力、选择阻尼系数和比热容均较大的支撑梁材料、采用柔度较大的主体桶材料等改善热颤振的措施。  相似文献   

19.
基于哈密顿原理,得到水凝胶的化学-力学耦合控制方程的等效积分形式和有限元形式。在整体坐标系下推导出用形函数表示的化学-力学耦合应变矩阵和单元刚度矩阵,并且得到在局部坐标系下的离散化形式。结合ABAQUS软件,编制了用户单元子程序UEL,通过数值算例验证了所开发单元的正确性,为在ABAQUS软件中实现各种耦合问题的有限元UEL编程提供了参考依据。  相似文献   

20.
广义来说, 近场动力学(peri-dynamics,PD)是假设每个物质点在承受一定范围内的非接触相互作用下,研究整个物理系统演化过程的理论,为涉及非连续和非局部相互作用的问题提供了一个统一的数学框架,具有广泛的适用性.在简要介绍诸多工程对于多物理场模型和数值计算软件的迫切需求后,针对现有商用软件在处理结构非连续演化问题时遇到的瓶颈,引入近场动力学理论和方法. 概述近场动力学固体力学模型,系统阐述近场动力学扩散模型和近场动力学多物理场耦合建模的研究现状和进展,主要涉及电子元器件、电子封装和岩土工程领域的多物理场耦合建模,包括热--力、湿--热--力、热--氧、热--力--氧、力--电、热--电、力--热--电、多孔介质的水--力流固相互作用等非耦合、半耦合与完全耦合模型,强调发展耦合方程数值解法的重要性.最后对扩散问题和多物理场耦合问题的近场动力学理论模型、数值算法和工程应用做进一步展望.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号