首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two‐phase flow model, which solves the flow in the air and water simultaneously, is presented for modelling breaking waves in deep and shallow water, including wave pre‐breaking, overturning and post‐breaking processes. The model is based on the Reynolds‐averaged Navier–Stokes equations with the k ?ε turbulence model. The governing equations are solved by the finite volume method in a Cartesian staggered grid and the partial cell treatment is implemented to deal with complex geometries. The SIMPLE algorithm is utilised for the pressure‐velocity coupling and the air‐water interface is modelled by the interface capturing method via a high resolution volume of fluid scheme. The numerical model is validated by simulating overturning waves on a sloping beach and over a reef, and deep‐water breaking waves in a periodic domain, in which good agreement between numerical results and available experimental measurements for the water surface profiles during wave overturning is obtained. The overturning jet, air entrainment and splash‐up during wave breaking have been captured by the two‐phase flow model, which demonstrates the capability of the model to simulate free surface flow and wave breaking problems.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A methodology for computing three‐dimensional interaction between waves and fixed bodies is developed based on a fully non‐linear potential flow theory. The associated boundary value problem is solved using a finite element method (FEM). A recovery technique has been implemented to improve the FEM solution. The velocity is calculated by a numerical differentiation technique. The corresponding algebraic equations are solved by the conjugate gradient method with a symmetric successive overrelaxation (SSOR) preconditioner. The radiation condition at a truncated boundary is imposed based on the combination of a damping zone and the Sommerfeld condition. This paper (Part 1) focuses on the technical procedure, while Part 2 [Finite element simulation of fully non‐linear interaction between vertical cylinders and steep waves. Part 2. Numerical results and validation. International Journal for Numerical Methods in Fluids 2001] gives detailed numerical results, including validation, for the cases of steep waves interacting with one or two vertical cylinders. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
An accurate three‐dimensional numerical model, applicable to strongly non‐linear waves, is proposed. The model solves fully non‐linear potential flow equations with a free surface using a higher‐order three‐dimensional boundary element method (BEM) and a mixed Eulerian–Lagrangian time updating, based on second‐order explicit Taylor series expansions with adaptive time steps. The model is applicable to non‐linear wave transformations from deep to shallow water over complex bottom topography up to overturning and breaking. Arbitrary waves can be generated in the model, and reflective or absorbing boundary conditions specified on lateral boundaries. In the BEM, boundary geometry and field variables are represented by 16‐node cubic ‘sliding’ quadrilateral elements, providing local inter‐element continuity of the first and second derivatives. Accurate and efficient numerical integrations are developed for these elements. Discretized boundary conditions at intersections (corner/edges) between the free surface or the bottom and lateral boundaries are well‐posed in all cases of mixed boundary conditions. Higher‐order tangential derivatives, required for the time updating, are calculated in a local curvilinear co‐ordinate system, using 25‐node ‘sliding’ fourth‐order quadrilateral elements. Very high accuracy is achieved in the model for mass and energy conservation. No smoothing of the solution is required, but regridding to a higher resolution can be specified at any time over selected areas of the free surface. Applications are presented for the propagation of numerically exact solitary waves. Model properties of accuracy and convergence with a refined spatio‐temporal discretization are assessed by propagating such a wave over constant depth. The shoaling of solitary waves up to overturning is then calculated over a 1:15 plane slope, and results show good agreement with a two‐dimensional solution proposed earlier. Finally, three‐dimensional overturning waves are generated over a 1:15 sloping bottom having a ridge in the middle, thus focusing wave energy. The node regridding method is used to refine the discretization around the overturning wave. Convergence of the solution with grid size is also verified for this case. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
In order to understand the nonlinear effect in a two‐layer system, fully nonlinear strongly dispersive internal‐wave equations, based on a variational principle, were proposed in this study. A simple iteration method was used to solve the internal‐wave equations in order to solve the equations stably. The applicability of the proposed numerical computation scheme was confirmed to agree with linear dispersion relation theoretically obtained from variational principle. The proposed computational scheme was also shown to reproduce internal waves including higher‐order nonlinear effect from the analysis of internal solitary waves in a two‐layer system. Furthermore, for the second‐order numerical analysis, the balance of nonlinearity and dispersion was found to be similar to the balance assumed in the KdV theory and the Boussinesq‐type equations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A numerical method is described that may be used to determine the propagation characteristics of weakly non‐hydrostatic non‐linear free surface waves over a general, bottom topography. In shallow water of constant undisturbed depth, such waves are equivalent to the familiar cnoidal waves characterized by sharp crests and relatively flat troughs. For a certain range of parameters, these propagate without change of form by virtue of the weakly non‐hydrostatic balance in the vertical momentum equation. Effectively, this counters the tendency for the non‐linearity in a purely hydrostatic theory to lead to a continuously deforming surface wave profile. The realistic representation furnished by cnoidal wave theory of free surface waves in the shallow near‐shore zone has led to its utilization in evaluating their propagation characteristics. Nonetheless, the classic analytical theory is inapplicable to the case of wave propagation over a sloping beach or off‐shore sand bar topography. Under these conditions, a local change in form of the surface wave profile is anticipated before the waves break and knowing this is required in order to evaluate fully the propagation process. The efficacy of the numerical method is first demonstrated by comparing the solution for water of constant depth with the evaluation of the analytical solution expressed in terms of the Jacobian elliptic function cn. The general method described in the paper is then illustrated by experiments to determine the change in profile of weakly non‐hydrostatic non‐linear surface waves propagating over bed forms representative of those found in shallow coastal seas. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
In Ma, Wu, Eatock Taylor [Finite element simulation of fully non‐linear interaction between vertical cylinders and steep waves. Part 1: methodology and numerical procedure. International Journal for Numerical Methods in Fluids 2001], designated Part 1 hereafter, we have developed the methodology and solution procedure for simulating the three‐dimensional interaction between fixed bodies and steep waves based on a finite element method (FEM). This paper provides extensive numerical results and validation. The effectiveness of the radiation condition is investigated by comparing the results from short and long tanks; the accuracy of the computed data is confirmed through comparison with analytical solutions. The adopted mathematical model is also validated by comparing the obtained numerical results with experimental data. Various test cases, including non‐linear bichromatic and irregular waves and the interactions between waves and one or two cylinders, are analysed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a parametric finite‐difference scheme concerning the numerical solution of the one‐dimensional Boussinesq‐type set of equations, as they were introduced by Peregrine (J. Fluid Mech. 1967; 27 (4)) in the case of waves relatively long with small amplitudes in water of varying depth. The proposed method, which can be considered as a generalization of the Crank‐Nickolson method, aims to investigate alternative approaches in order to improve the accuracy of analogous methods known from bibliography. The resulting linear finite‐difference scheme, which is analysed for stability using the Fourier method, has been applied successfully to a problem used by Beji and Battjes (Coastal Eng. 1994; 23 : 1–16), giving numerical results which are in good agreement with the corresponding results given by MIKE 21 BW (User Guide. In: MIKE 21, Wave Modelling, User Guide. 2002; 271–392) developed by DHI Software. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
9.
A fully nonlinear irregular wave tank has been developed using a three‐dimensional higher‐order boundary element method (HOBEM) in the time domain. The Laplace equation is solved at each time step by an integral equation method. Based on image theory, a new Green function is applied in the whole fluid domain so that only the incident surface and free surface are discretized for the integral equation. The fully nonlinear free surface boundary conditions are integrated with time to update the wave profile and boundary values on it by a semi‐mixed Eulerian–Lagrangian time marching scheme. The incident waves are generated by feeding analytic forms on the input boundary and a ramp function is introduced at the start of simulation to avoid the initial transient disturbance. The outgoing waves are sufficiently dissipated by using a spatially varying artificial damping on the free surface before they reach the downstream boundary. Numerous numerical simulations of linear and nonlinear waves are performed and the simulated results are compared with the theoretical input waves. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The purpose of the present study is to establish a numerical model appropriate for solving inviscid/viscous free‐surface flows related to nonlinear water wave propagation. The viscous model presented herein is based on the Navier–Stokes equations, and the free‐surface is calculated through an arbitrary Lagrangian–Eulerian streamfunction‐vorticity formulation. The streamfunction field is governed by the Poisson equation, and the vorticity is obtained on the basis of the vorticity transport equation. For computing the inviscid flow the Laplace streamfunction equation is used. These equations together with the respective (appropriate) fully nonlinear free‐surface boundary conditions are solved using a finite difference method. To demonstrate the model feasibility, in the present study we first simulate collision processes of two solitary waves of different amplitudes, and compute the phenomenon of overtaking of such solitary waves. The developed model is subsequently applied to calculate (both inviscid and the viscous) flow field, as induced by passing of a solitary wave over submerged rectangular structures and rigid ripple beds. Our study provides a reasonably good understanding of the behavior of (inviscid/viscous) free‐surface flows, within the framework of streamfunction‐vorticity formulation. The successful simulation of the above‐mentioned test cases seems to suggest that the arbitrary Lagrangian–Eulerian/streamfunction‐vorticity formulation is a potentially powerful approach, capable of effectively solving the fully nonlinear inviscid/viscous free‐surface flow interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A numerical method for the solution to the density‐dependent incompressible Navier–Stokes equations modeling the flow of N immiscible incompressible liquid phases with a free surface is proposed. It allows to model the flow of an arbitrary number of liquid phases together with an additional vacuum phase separated with a free surface. It is based on a volume‐of‐fluid approach involving N indicator functions (one per phase, identified by its density) that guarantees mass conservation within each phase. An additional indicator function for the whole liquid domain allows to treat boundary conditions at the interface between the liquid domain and a vacuum. The system of partial differential equations is solved by implicit operator splitting at each time step: first, transport equations are solved by a forward characteristics method on a fine Cartesian grid to predict the new location of each liquid phase; second, a generalized Stokes problem with a density‐dependent viscosity is solved with a FEM on a coarser mesh of the liquid domain. A novel algorithm ensuring the maximum principle and limiting the numerical diffusion for the transport of the N phases is validated on benchmark flows. Then, we focus on a novel application and compare the numerical and physical simulations of impulse waves, that is, waves generated at the free surface of a water basin initially at rest after the impact of a denser phase. A particularly useful application in hydraulic engineering is to predict the effects of a landslide‐generated impulse wave in a reservoir. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the 3D Navier–Stokes (N–S) equation and Cahn–Hilliard (C–H) equations were solved using a free‐energy‐based lattice Boltzmann (LB) model. In this model, a LB equation with a D3Q19 velocity model is used to recover continuity and N–S equations while another LB equation with D3Q7 velocity model for solving C–H equation (Int. J. Numer. Meth. Fluids, 2008; 56 :1653–1671) is applied to solve the 3D C–H equation. To avoid the excessive use of computational resources, a moving reference frame is adopted to allow long‐time simulation of a bubble rising. How to handle the inlet/outlet and moving‐wall boundary conditions are suggested. These boundary conditions are simple and easy for implementation. This model's performance on two‐phase flows was investigated and the mass conservation of this model was evaluated. The model is validated by its application to simulate the 3D air bubble rising in viscous liquid (density ratio is 1000). Good agreement was obtained between the present numerical results and experimental results when Re is small. However, for high‐Re cases, the mass conservation seems not so good as the low‐Re case. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is to continue our previous work Niu (Int. J. Numer. Meth. Fluids 2001; 36 :351–371) on solving a two‐fluid model for compressible liquid–gas flows using the AUSMDV scheme. We first propose a pressure–velocity‐based diffusion term originally derived from AUSMDV scheme Wada and Liou (SIAM J. Sci. Comput. 1997; 18 (3):633—657) to enhance its robustness. The scheme can be applied to gas and liquid fluids universally. We then employ the stratified flow model Chang and Liou (J. Comput. Physics 2007; 225 :240–873) for spatial discretization. By defining the fluids in different regions and introducing inter‐phasic force on cell boundary, the stratified flow model allows the conservation laws to be applied on each phase, and therefore, it is able to capture fluid discontinuities, such as the fluid interfaces and shock waves, accurately. Several benchmark tests are studied, including the Ransom's Faucet problem, 1D air–water shock tube problems, 2D shock‐water column and 2D shock‐bubble interaction problems. The results indicate that the incorporation of the new dissipation into AUSM+‐up scheme and the stratified flow model is simple, accurate and robust enough for the compressible multi‐phase flows. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A horizontally curvilinear non‐hydrostatic free surface model that embeds the second‐order projection method, the so‐called θ scheme, in fractional time stepping is developed to simulate nonlinear wave motion in curved boundaries. The model solves the unsteady, Navier–Stokes equations in a three‐dimensional curvilinear domain by incorporating the kinematic free surface boundary condition with a top‐layer boundary condition, which has been developed to improve the numerical accuracy and efficiency of the non‐hydrostatic model in the standard staggered grid layout. The second‐order Adams–Bashforth scheme with the third‐order spatial upwind method is implemented in discretizing advection terms. Numerical accuracy in terms of nonlinear phase speed and amplitude is verified against the nonlinear Stokes wave theory over varying wave steepness in a two‐dimensional numerical wave tank. The model is then applied to investigate the nonlinear wave characteristics in the presence of dispersion caused by reflection and diffraction in a semicircular channel. The model results agree quantitatively with superimposed analytical solutions. Finally, the model is applied to simulate nonlinear wave run‐ups caused by wave‐body interaction around a bottom‐mounted cylinder. The numerical results exhibit good agreement with experimental data and the second‐order diffraction theory. Overall, it is shown that the developed model, with only three vertical layers, is capable of accurately simulating nonlinear waves interacting within curved boundaries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A new accurate finite‐difference (AFD) numerical method is developed specifically for solving high‐order Boussinesq (HOB) equations. The method solves the water‐wave flow with much higher accuracy compared to the standard finite‐difference (SFD) method for the same computer resources. It is first developed for linear water waves and then for the nonlinear problem. It is presented for a horizontal bottom, but can be used for variable depth as well. The method can be developed for other equations as long as they use Padé approximation, for example extensions of the parabolic equation for acoustic wave problems. Finally, the results of the new method and the SFD method are compared with the accurate solution for nonlinear progressive waves over a horizontal bottom that is found using the stream function theory. The agreement of the AFD to the accurate solution is found to be excellent compared to the SFD solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Nonlinear characteristic boundary conditions based on nonlinear multidimensional characteristics are proposed for 2‐ and 3‐D compressible Navier–Stokes equations with/without scalar transport equations. This approach is consistent with the flow physics and transport properties. Based on the theory of characteristics, which is a rigorous mathematical technique, multidimensional flows can be decomposed into acoustic, entropy, and vorticity waves. Nonreflecting boundary conditions are derived by setting corresponding characteristic variables of incoming waves to zero and by partially damping the source terms of the incoming acoustic waves. In order to obtain the resulting optimal damping coefficient, analysis is performed for problems of pure acoustic plane wave propagation and arbitrary flows. The proposed boundary conditions are tested on two benchmark problems: cylindrical acoustic wave propagation and the wake flow behind a cylinder with strong periodic vortex convected out of the computational domain. This new approach substantially minimizes the spurious wave reflections of pressure, density, temperature, and velocity as well as vorticity from the artificial boundaries, where strong multidimensional flow effects exist. The numerical simulations yield accurate results, confirm the optimal damping coefficient obtained from analysis, and verify that the method substantially improves the 1‐D characteristics‐based nonreflecting boundary conditions for complex multidimensional flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper a layer‐structured finite volume model for non‐hydrostatic 3D environmental free surface flow is presented and applied to several test cases, which involve the computation of gravity waves. The 3D unsteady momentum and mass conservation equations are solved in a collocated grid made of polyhedrons, which are built from a 2D horizontal unstructured mesh, by just adding several horizontal layers. The mesh built in such a way is unstructured in the horizontal plane, but structured in the vertical direction. This procedure simplifies the mesh generation and at the same time it produces a well‐oriented mesh for stratified flows, which are common in environmental problems. The model reduces to a 2D depth‐averaged shallow water model when one single layer is defined in the mesh. Pressure–velocity coupling is achieved by the Semi‐Implicit Method for Pressure‐Linked Equations algorithm, using Rhie–Chow interpolation to stabilize the pressure field. An attractive property of the model proposed is the ability to compute the propagation of short waves with a rather coarse vertical discretization. Several test cases are solved in order to show the capabilities and numerical stability of the model, including a rectangular free oscillating basin, a radially symmetric wave, short wave propagation over a 1D bar, solitary wave runup on a vertical wall, and short wave refraction over a 2D shoal. In all the cases the numerical results are compared either with analytical or with experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a new spectral model for solving the fully nonlinear potential flow problem for water waves in a single horizontal dimension. At the heart of the numerical method is the solution to the Laplace equation which is solved using a variant of the σ ‐transform. The method discretizes the spatial part of the governing equations using the Galerkin method and the temporal part using the classical fourth‐order Runge‐Kutta method. A careful investigation of the numerical method's stability properties is carried out, and it is shown that the method is stable up to a certain threshold steepness when applied to nonlinear monochromatic waves in deep water. Above this threshold artificial damping may be employed to obtain stable solutions. The accuracy of the model is tested for: (i) highly nonlinear progressive wave trains, (ii) solitary wave reflection, and (iii) deep water wave focusing events. In all cases it is demonstrated that the model is capable of obtaining excellent results, essentially up to very near breaking.  相似文献   

19.
Surface Water Waves and Tsunamis   总被引:1,自引:0,他引:1  
Because of the enormous earthquake in Sumatra on December 26, 2004, and the devastating tsunami which followed, I have chosen the focus of my mini-course lectures at this year’s PASI to be on two topics which involve the dynamics of surface water waves. These topics are of interest to mathematicians interested in wave propagation, and particularly to Chilean scientists, I believe, because of Chile’s presence on the tectonically active Pacific Rim. My first lecture will describe the equations of fluid dynamics for the free surface above a body of fluid (the ocean surface), and the linearized equations of motion. From this, we can predict the travel time of the recent tsunami from its epicenter off of the north Sumatra coast to the coast of nearby Thailand, the easy coasts of Sri Lanka and south India, and to Africa. In fact, the signal given by ocean waves generated by the Sumatra earthquake was felt globally; within 48 h distinguishable tsunami waves were measured by wave gages in Antarctica, Chile, Rio di Janeiro, the west coast of Mexico, the east coast of the United States, and at Halifax, Nova Scotia. To describe ocean waves, we will formulate the full nonlinear fluid dynamical equations as a Hamiltonian system [19], and we will introduce the Greens function and the Dirichlet-Neumann operator for the fluid domain along with the harmonic analysis of the theory of their regularity. From an asymptotic theory of scaling transformations, we will derive the known Boussinesq-like systems and the KdV and KP equations, which govern the asymptotic behavior of tsunami waves over an idealized flat bottom. When the bottom is no longer assumed to be perfectly flat, a related theory [6, 13] gives a family of model equations taking this into account. My second lecture will describe a series of recent results in PDE, numerical results, and experimental results on the nonlinear interactions of solitary surface water waves. In contrast with the case of the KdV equations (and certain other integrable PDE), the Euler equations for a free surface do not admit clean (‘elastic’) interactions between solitary wave solutions. This has been a classical concern of oceanographers for several decades, but only recently have there been sufficiently accurate and thorough numerical simulations which quantify the degree to which solitary waves lose energy during interactions [3, 4]. It is striking that this degree of ‘inelasticity’ is remarkably small. I will describe this work, as well as recent results on the initial value problem which are very relevant to this phenomenon [14, 18].  相似文献   

20.
The paper presents a 2‐D large eddy simulation (LES) modelling approach to investigate the properties of the plunging waves. The numerical model is based on the smoothed particle hydrodynamics (SPH) method. SPH is a mesh‐free Lagrangian particle approach which is capable of tracking the free surfaces of large deformation in an easy and accurate way. The Smagorinsky model is used as the turbulence model due to its simplicity and effectiveness. The proposed 2‐D SPH–LES model is applied to a cnoidal wave breaking and plunging over a mild slope. The computations are in good agreement with the documented data. Especially the computed turbulence quantities under the breaking waves agree better with the experiments as compared with the numerical results obtained by using the k–ε model. The sensitivity analyses of the SPH–LES computations indicate that both the turbulence model and the spatial resolution play an important role in the model predictions and the contributions from the sub‐particle scale (SPS) turbulence decrease with the particle size refinement. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号