首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   5篇
化学   15篇
力学   3篇
数学   2篇
物理学   10篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
马安彤  付超  楚慧颖  冉祥海  聂伟 《应用化学》2020,37(12):1411-1419
为了提高聚偏氟乙烯(PVDF)的压电性能,需要寻找有效的途径来提高PVDF的电活性相(β相)含量。 通过水热法成功合成了Ag、ZnO以及二者复合(Ag-ZnO)的3种类型纳米粒子,并与PVDF共混形成PVDF复合薄膜。 通过表征PVDF复合材料的形貌,结晶性能和压电性能,可以发现Ag-ZnO复合纳米粒子的协同作用可以有效提高PVDF的结晶性能和压电性能。 此外,通过单轴拉伸可以使得所有PVDF膜的β相含量得到进一步提高,其中拉伸后的PVDF/Ag-ZnO纳米颗粒(P-C)的β相物质的量分数最高,达到70.0%,最佳的压电系数(d33)达到了31.0 pC/N。  相似文献   
2.
压力可以引起蛋白折叠与变性。作为蛋白质的基本构成单位,氨基酸在高压下的变化近来年备受关注。在常见的20种氨基酸中,学者们利用高压拉曼技术已研究了多种氨基酸在高压下的变化,研究的最高压力达到30 GPa。为了探究L-丝氨酸(C3H7NO3)在极高压力下的结构变化情况,采用原位高压拉曼技术在常温下对L-丝氨酸晶体进行研究,最高压力达到22.6 GPa。研究发现,当压力达到2.7 GPa时,在102 cm-1处出现新峰,在1 123 cm-1(NH3反对称摇摆振动)处的特征峰出现劈裂;当压力达到5.4 GPa时,L-丝氨酸晶体在574 cm-1处出现新峰,同时原来164 cm-1处峰消失;当压力达到6.0 GPa时,位于226,456,770和2 968 cm-1(CH2伸缩振动)等处出现新峰,877 cm-1处的CC伸缩振动峰发生劈裂,产生894 cm-1新峰;当压力达到7.9 GPa时,在145,151和2 946 cm-1等出现新峰,同时原在CO2摇摆振动峰的肩峰531 cm-1消失;当压力达到11.0 GPa时,位于249 cm-1处的振动峰开始劈叉,在241 cm-1处形成新峰,位于2 956 cm-1(CH2伸缩振动)同时原位于391和431 cm-1处的峰消失;当压力达到17.5 GPa时,在200 cm-1处出现新峰。通过进一步分析L-丝氨酸的拉曼波数随压力的变化,发现很多拉曼峰在1.37,2.2,5.3,7.46和11.0 GPa以及15.5 GPa等压力点处都出现了拐点。其结果表明:L-丝氨酸在0.1~22.6 GPa之间共发生7处结构相变,分别位于压力区间0.1~1.37,2.2~2.7,5.3,6.0,7.46~7.9,10.1~11.0和15.5~17.5 GPa之间。而且,在6.0 GPa新的相变点在之前文献中未论述过。由于L-丝氨酸晶体在6.0 GPa时CC伸缩振动峰发生劈裂,这现象可能是由于压力引起L-丝氨酸晶体分子发生重排导致的,同时L-丝氨酸晶体分子重排导致氢键发生重排,使得L-丝氨酸晶体出现新的CH2伸缩振动峰。L-丝氨酸晶体在10.1~11.0 GPa之间的拉曼光谱变化主要集中在低波数段,该波数段的拉曼振动模式主要与晶体晶格振动等低能量振动有关。同时在高波数段出现新的CH2峰,由此可推测在10.1~11.0 GPa之间,L-丝氨酸晶体的晶格振动发生变化,产生了新的氢键,从而导致了L-丝氨酸晶体结构的改变。L-丝氨酸晶体在15.5~17.5 GPa之间,由于没有发现直接证据证明其发生结构相变,只是在拉曼波数随压力变化中,发现其在17.5 GPa时出现拐点,因此推测L-丝氨酸晶体在15.5~17.5 GPa之间可能发生结构相变。  相似文献   
3.
研究地层压力变化对渗流特征的影响,对低渗透储层、碳酸盐岩储层,或其他致密性储层的油气开采和储层改造都具有重要意义.在考虑渗流压力梯度平方项存在的前提下,运用摄动法求解的相关理论,将渗透率随压力的变化融入到渗流问题的求解过程中,有效地求解了该类压敏型储层的非线性渗流问题.结果表明,在实际应用中,尤其是在储层压敏性较弱的情况下,可考虑直接用0阶摄动解即可满足较好的计算精度;储层的压敏性越强,越适宜通过用摄动解的修正,来达到精确求解的目的.  相似文献   
4.
基于重离子储存环建立的等时性质谱术(IMS)是测量远离稳定线核素质量的有效工具。但是,采用常规IMS测量缺中子一侧的核素质量时,发现Tz=-1/2和Tz=-1核素的质量测量结果在宽时域范围内存在系统性偏差。本工作利用CSRe直线段上的双飞行时间(TOF)探测器,同时测量了循环离子的周期和速度。利用这些实验信息,对常规IMS质量测量中出现的系统性偏差进行了研究。发现系统偏差是由于储存的离子动量分布不对称以及储存环能量转变参数γt非恒定造成的。在离线数据处理时,发现通过限制动量接收度的大小,可以消除常规IMS质量测量中的系统偏差。这一结果对采用常规IMS进行质量测量具有重要参考价值和指导意义。  相似文献   
5.
梁彦明  宋航  付超  郑文丽 《分析化学》2003,31(10):1253-1255
用WHELK-O1手性色谱柱,在正相条件下测定了几种非甾体类解热镇痛药物萘普生、布洛芬、酮基布洛芬和苯氧布洛芬等中对映体的含量。结果表明:这种手性固定相色谱柱能够以正己烷和异丙醇为流动相,简便、快速、准确地测定非甾类药物中对映体的含量。  相似文献   
6.
针对决策者在不完全属性集下进行评价的多属性群决策问题,考虑对缺失属性上的评价进行估计,提出了一种基于决策者相似度的多属性群决策方法.给定决策者在不完全属性集上的评价矩阵,构造同时考虑交叉属性个数和评价值的决策者相似度,基于此相似度对缺失属性评价进行估计,进而利用加权平均法对完整的评价矩阵进行集结得到每个决策者的方案排序.在此基础上,以决策者方案排序与总体方案排序差异最小为目标,构建优化模型以产生最优的总体方案排序.运用所提方法解决江苏省常州市一家高速列车制造企业的战略项目评价问题,验证了该方法的有效性与应用性.  相似文献   
7.
基于兰州重离子研究装置冷却储存环(HIRFL-CSR)发展了等时性质谱术(Isochronous mass spectrometry,IMS),高精度测量了一批短寿命原子核的质量并研究了核结构和核天体领域的相关物理问题。本文综述了IMS实验的原理和步骤,重点介绍了目前正在发展的双TOF探测器谱仪。利用双TOF质量谱仪在测量离子回旋周期的同时测量了离子的速度,用来修正实验结果,可以在很宽的动量接收度内实现高质量分辨,并消除离子动量分散带来的系统误差。双TOF等时性质谱术是全新的概念,需要针对性开发相关实验技术。我们建立了基于CSRe的模拟平台,研制了高性能TOF探测器并安装在CSRe直线段,进行了在线束流测试,发展了新的束流光学设置并进行优化,开发了实验数据处理方法并在做进一步优化,并对下一步工作进行了展望。  相似文献   
8.
根据几种常用放射性核素的寿命计算方法,通过模拟数据研究了直接拟合法、对数时间法、极大似然法、观测时间受限时的极大似然法等四种寿命计算方法的适用范围。当观测时间不受限时,研究了在不同计数下寿命计算方法的适用范围。当观测时间受限时,研究了在不同观测时间窗口下寿命计算方法的适用范围。模拟中选用全剥离离子94mRu44+作为目标核素,得到了不同计数及不同观测时间窗口下的寿命及其误差,并给出了四种方法的适用范围。94mRu44+寿命的模拟结果与在兰州等时性质量谱仪上获得的实验结果在一倍标准偏差范围内一致,从而进一步验证了寿命计算方法的适用范围及模拟数据的可靠性。该模拟结果可为寿命测量实验设计提供理论依据和参考。  相似文献   
9.
付超  杨颖梓  邱枫 《化学学报》2019,77(1):95-102
树枝形大分子因其高度支化的特殊结构,在传感、载药、催化等众多领域有着广泛的应用潜力.运用高斯链模型推导了溶液体系中树枝形均聚物的自洽场方程组.并在不考虑体积排除作用的条件下,计算了θ溶液中分子的中心链节官能度f0、支化点官能度f、间隔链段的聚合度P、以及总代数G对链节浓度分布及均方回转半径的影响.计算结果显示,链节浓度分布总是符合"dense-core"的模型,即在所有计算参数组合下,链节浓度总是沿径向单调下降,并随f0fG的增加而单调增加.自洽场计算得到的树枝形均聚物的均方回转半径R与Rouse动力学模型的计算结果基本一致,在f0fG的数值较大时,都能够得到<R2>≈GPa2的标度律关系.  相似文献   
10.
1999年,FDA批准了注射用的12种复合维生素(CERNEVIT-12),该制剂不同于以往的单纯性水溶性维生素与单纯性的脂溶性维生素组合,它是一种同时具备水溶性与脂溶性维生素的复合维生素产品,能够为患者提供全面的维生素支持.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号