首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
求解混合型裂纹应力强度因子的围绕积分法   总被引:7,自引:0,他引:7  
本文用复变函数理论推导出裂纹的辅助场,并用Betti功互等定理给出求解混合型裂纹应力强度因子的远场围绕积分法,此方法与积分路径的选择无关,用有限元法计算出远离裂纹尖端的位移场和应力场,就可通过计算绕裂端的围线积分,精确地给出混合型裂纹的应力强度因子K1和K1的数值解。  相似文献   

2.
求解界面裂纹应力强度因子的围线积分法   总被引:4,自引:0,他引:4  
本文基于Betti功互等定理和双材料界面裂纹辅助场,提出了一种求解界面裂纹应力强度因子的方法,即远场围线积分法。此方法与积分径的选择无关,用有元元法计算出远离裂纹尖端的位移场和应力场,应可通过计算绕裂尖围线的积分,精确地给出界面裂纹应力强度因子KI和KⅡ。  相似文献   

3.
利用双材料位移基本解和Somigliana公式,将三维体内含垂直于双材料界面混合型裂纹问题归结为求解一组超奇异积分方程。使用主部分析法,通过对裂纹前沿应力奇性的分析,得到用裂纹面位移间断表示的应力强度因子的计算公式,进而利用超奇异积分方程未知解的理论分析结果和有限部积分理论,给出了超奇异积分方程的数值求解方法。最后,对典型算例的应力强度因子做了计算,并讨论了应力强度因子数值结果的收敛性及其随各参数变化的规律。  相似文献   

4.
应用半权函数法求解双材料界面裂纹的应力强度因子,得到以半权函数对参考位移与应力加权积分的形式表示的应力强度因子。针对特征值为复数λ的双材料界面裂纹裂尖应力和位移场,设置与之对应特征值为-λ的位移函数,即半权函数。半权函数的应力函数满足平衡方程,应力应变关系,界面的连续条件以及在裂纹面上面力为0;半权函数与裂纹体的几何尺寸无关,对边界条件没有要求。由功的互等定理得到应力强度因子KⅠ和KⅡ的积分形式表达式。本文计算了多种情况下界面裂纹应力强度因子的算例,与文献结果符合得很好。由于裂尖应力的振荡奇异性已经在积分中避免,只需考虑绕裂尖远场的任意路径上位移和应力,即使采用该路径上较粗糙的参考解也可以得到较精确的结果。  相似文献   

5.
与两相材料界面接触的裂纹对SH波的散射   总被引:1,自引:0,他引:1  
陆建飞  汪越胜  蔡兰 《力学学报》2003,35(4):432-436
利用积分变换方法得出了两相材料中作用简谐集中力时的格林函数.根据所得的格林函数并利用Betti-Rayleigh互易定理得出了与界面接触裂纹的散射波场.裂纹的散射波场可分解为两部分,一部分为奇异的散射场,另一部分为有界的散射场.利用分解后的散射场,可得裂纹在SH波作用下的超奇异积分方程.根据裂纹散射场的奇异部分和Cauchy型奇异积分的性质得出了裂纹和界面接触点处的奇性应力指数和接触点角形域内的奇性应力.利用所得的奇性应力定义了裂纹和界面接触点处的动应力强度因子.对所得超奇异积分方程的数值求解可得裂纹端点和接解点处的应力强度因子。  相似文献   

6.
折线型裂纹对SH波的动力响应   总被引:1,自引:0,他引:1  
利用Fourier积分变换方法,得出了无限平面中用裂纹位错密度函数表示的单裂纹散射场.根据无穷积分的性质,把单裂纹的散射场分解为奇异部分和有界部分.利用单裂纹的散射场建立了折线裂纹在SH波作用下的Cauchy型奇异积分方程.根据折线裂纹散射场和所得的积分方程讨论了裂纹在折点处的奇性应力及折点处的奇性应力指数.利用所得的奇性应力定义了折点处的应力强度因子.对所得Cauchy型奇积分方程的数值求解,可得裂纹端点和折点处的动应力强度因子。  相似文献   

7.
本文研究了面内电磁势载荷作用下双层压电压磁复合材料中共线界面裂纹问题.考虑了压电材料的导磁性质和压磁材料的介电性质,引入了界面电位移和磁感强度的连续性条件.利用Fourier 变换得到一组第二类Cauchy 型奇异积分方程.进一步导出了相应问题的应力强度因子、电位移强度因子和磁感强度强度因子的表达式,给出了应力强度因子的数值结果.结果表明电磁载荷会导致界面裂纹尖端I、II 混合型应力奇异性,同时还伴随着电位移和磁感强度的奇异性.比较了双裂纹左右端的应力强度因子,发现在面内极化方向上施加面内磁势载荷时共线裂纹内侧尖端区域的两个法向应力场发生互相干涉增强.  相似文献   

8.
利用Somigliana公式及有限部积分的概念,导出含两平行平片裂纹三维有限体裂纹干扰问题的超奇异积分方程组,联合使用有限部积分与边界元法,建立了数值求解方法,为提高数值计算结果的精度,在裂纹前疝附近单元,采用平方根位移模型,并在此基础雌出直接计算应力强度因子的公式,最后计算若干典型例子裂纹前沿的应力强度因子。  相似文献   

9.
计算St.Venant扭转时K_Ⅱ的任意高阶奇应变单元   总被引:3,自引:0,他引:3  
Wilson W.K.提出的高阶奇应变圆单元(SSC)把有限单元法和裂纹尖端附近的线弹性解析解结合起来,能够成功地计算应力强度因子K_Ⅰ或K_Ⅱ.Holston A.Jr.进一步用奇应变单元来计算混合型应力强度因子K_Ⅰ K_Ⅲ。至于用奇应变单元来计算应力强度因子K_Ⅲ,原则上也是类同的,Hilton P.D.有过介绍。郑州机械研究所曾用来计算转子受扭时内孔的径向裂纹的K_Ⅲ。但是他们所  相似文献   

10.
直接计算应力强度因子的扩展有限元法   总被引:2,自引:0,他引:2  
系统地给出了直接计算应力强度因子的扩展有限元法。该方法以常规有限元法为基础,利用单位分解法思想,通过在近似位移表达式中增加能够反映裂纹面的不连续函数及反映裂尖局部特性的裂尖渐进位移场函数,间接体现裂纹面的存在,从而无需使裂纹面与有限元网格一致,无需在裂尖布置高密度网格,也不需要后处理就可以直接计算出应力强度因子,并且大大简化了前后处理工作。最后通过两个简单算例验证了该方法的精度,分析了影响计算结果的因素,并与采用J积分计算的应力强度因子作了对比,得出了两种方法计算精度相当的结论。  相似文献   

11.
朱伯靖  秦太验 《力学学报》2007,39(4):510-516
应用有限部积分概念和广义位移基本解,垂直于磁压电双材料界面三维复合型裂纹问题被转 化为求解一组以裂纹表面广义位移间断为未知函数的超奇异积分方程问题. 进而,通过主部 分析法精确地求得裂纹尖端光滑点附近的奇性应力场解析表达式. 然后,通过将裂纹表面 位移间断未知函数表达为位移间断基本密度函数与多项式之积,使用有限部积分法对超奇异 积分方程组建立了数值方法. 最后,通过典型算例计算,讨论了广义应力强度因子的变化规 律.  相似文献   

12.
The contour integral method previously used to determine static stress intensity factors is applied to dynamic crack problems. The required derivatives of the traction in the reference problem are obtained numerically by the displacement discontinuity method. Stress intensity factors are determined by an integral around a contour which contains a crack tip. If the contour is chosen as the outer boundary of the body, the stress intensity factor is obtained from the boundary values of traction and displacement. The advantage of this path-independent integral is that it yields directly both the opening-mode and sliding-mode stress intensity factors for a straight crack. For dynamic problems, Laplace transforms are used and the dynamic stress intensity factors in the time domain are determined by Durbin's inversion method. An indirect boundary element method, incorporating both displacement discontinuity and fictitious load techniques, is used to determine the boundary or contour values of traction and displacement numerically.  相似文献   

13.
陆洋春  张建铭 《应用力学学报》2020,(1):168-175,I0011,I0012
传统有限元法由于采用低阶插值计算应力强度因子时,需要划分的网格数较多,收敛速度较慢,得到的应力强度因子精度不足。p型有限元法在网格确定时通过增加插值多项式的阶数来提高计算精度,具有网格划分少、收敛速度快、精度高、自适应能力强等特点。本文采用基于p型有限元法的有限元计算软件StressCheck计算得到应力场和位移场,并由围线积分法导出混合型应力强度因子(SIFs)。通过几个经典算例,分析了围线的选择对计算精度的影响,计算了不同裂纹长度、不同裂纹角度和裂纹在应力集中区域不同位置时的应力强度因子。并将数值结果、理论解与文献中其他数值计算方法所得的部分结果进行了对比分析,结果表明自由度数不大于7000时,导出的应力强度因子相对误差最大不超过1.2%,数值解表现出较高的精度及数值稳定性。  相似文献   

14.
研究了薄膜涂层材料中币形界面裂纹的弹性波散射问题,建立了含有币形界面裂纹的覆层半空间模型,采用Hankel积分变换,将裂纹对弹性波散射的问题转化为求解矩阵形式的奇异积分方程。结合渐近分析和围道积分技术得到积分方程的解,进一步推导了散射波的应力场和位移场,以及动应力强度因子的理论计算公式。在数值算例中,分析了不同材料组合和裂纹尺寸情况下动应力强度因子与入射波频率的关系,并给出了裂纹张开位移的结果。为薄膜涂层材料的动态破坏分析提供了一定的理论基础。  相似文献   

15.
The computation of stress intensity factors in dissimilar materials   总被引:3,自引:0,他引:3  
A reciprocal work contour integral method for calculating stress intensity factors is extended to treat the problem of two bonded dissimilar materials containing a crack along the bond. The method is based on Betti's Reciprocal work theorem from which the singular stress intensities at the crack tip may be evaluated in terms of an integral involving tractions and displacements on a contour remote from the crack tip.  相似文献   

16.
This paper is concerned with the elastic wave scattering induced by a penny-shaped interface crack in coated materials. Using the integral transform, the problem of wave scattering is reduced to a set of singular integral equations in matrix form. The singular integral equations are solved by the asymptotic analysis and contour integral technique, and the expressions for the stress and displacement as well as the dynamic stress intensity factors (SIFs) are obtained. Using numerical analysis, this approach is verified by the finite element method (FEM), and the numerical results agree well with the theoretical results. For various crack sizes and material combinations, the relations between the SIFs and the incident frequency are analyzed, and the amplitudes of the crack opening displacements (CODs) are plotted versus incident wavenumber. The investigation provides a theoretical basis for the dynamic failure analysis and nondestructive evaluation of coated materials.  相似文献   

17.
An integral formulation for computing the nonsingular stresses (NSS) in a cracked body under mixed-mode static and dynamic loads is presented. The reciprocity theorems are applied to find the integral formula. The auxiliary fields are selected to eliminate the singular terms in the asymptotic expansion of the stresses near the crack tip. For elastodynamic crack problems, the integral representation of the NSS is presented in both the time and Laplace transform domain. Required variables along the integration path and region enclosed by the integration contour are obtained from the boundary element analysis. Influence of the NSS on predicting the crack growth direction is investigated for cracks under mixed-mode load conditions.  相似文献   

18.
Summary  The singular integral equation method is applied to the calculation of the stress intensity factor at the front of a rectangular crack subjected to mixed-mode load. The stress field induced by a body force doublet is used as a fundamental solution. The problem is formulated as a system of integral equations with r −3-singularities. In solving the integral equations, unknown functions of body-force densities are approximated by the product of polynomial and fundamental densities. The fundamental densities are chosen to express two-dimensional cracks in an infinite body for the limiting cases of the aspect ratio of the rectangle. The present method yields rapidly converging numerical results and satisfies boundary conditions all over the crack boundary. A smooth distribution of the stress intensity factor along the crack front is presented for various crack shapes and different Poisson's ratio. Received 5 March 2002; accepted for publication 2 July 2002  相似文献   

19.
A bounding procedure combined with an effective error bound method for linear functionals of the displacements and a simple two points displacement extrapolation method is presented to compute the lower and upper bounds to the stress intensity factors in elastic fracture problems. First, the displacements of two nodes (or node pairs) on the crack edges are used to construct the linear extrapolation to obtain the stress intensity factors at the crack tip, so that stress intensity factors are explicitly expressed as linear functionals of the displacements. Then, a posteriori bounding method is utilized to compute the bounds to the stress intensity factors. Finally, the bounding procedure is verified by a mixed-mode homogenous elastic fracture problem and a bimaterial interface crack problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号