首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于3自由度的新月形覆冰输电线舞动稳定性研究   总被引:2,自引:0,他引:2  
针对覆冰输电线舞动问题提出了一种基于非对称空气动力系数矩阵的临界风速计算方法.基于拟静态理论得到覆冰输电线的气动载荷,该气动载荷考虑了横向运动以及扭转运动对相对风攻角的影响,最后建立等效的3自由度覆冰输电线舞动模型.在初始风攻角处对气动载荷进行泰勒展开,得到非对称的线性空气动力系数矩阵.结合3自由度振动方程以及非对称空气动力系数矩阵,采用Rourh-Hurwitz准则计算覆冰输电线舞动发生的临界风速.通过风洞实验测得新月型覆冰单导线的空气动力系数,根据本文提出的理论分析了竖向振动频率、面外振动频率以及扭转振动频率对临界风速的影响,最后与DenHartog理论得到的临界风速进行了对比.本文研究成果对于指导覆冰输电线路防舞设计具有理论意义.  相似文献   

2.
在复杂工况下,大型风力机非定常特性会更严重,导致风力机气动性能变化和尾迹预测更加复杂。本文主要针对稳态偏航、动态偏航、风剪切和随机风速场等复杂工况,基于自由涡尾迹方法,嵌入复杂工况的模块,加入了动态失速模型和三维旋转效应模型修正,实现了复杂工况数值模拟计算,比较了不同复杂工况的气动载荷和尾迹形状。最后,得出了风力机在复杂工况下的气动性能、载荷和尾迹叶尖涡线特性,并计算出风力机在复杂工况下的气动载荷超调量和迟滞时间。对推进自由涡尾迹方法应用于风力机工程的大批工况载荷计算,提高大型风力机的载荷计算精度和设计水平等具有重要意义。  相似文献   

3.
覆冰导线舞动是由这些导线的气动不稳定性引起的。由于导线动态空气动力特性不同于静态气动系数,本文针对新月形冰形制作了覆冰四分裂导线模型,通过风洞试验动态测试的装置设定可测量不同扭转频率下的空气动力系数。风洞试验得到了不同扭转运动频率、风速和覆冰厚度等关键工况下新月形覆冰四分裂导线的动态空气动力系数。风洞试验结果显示,动态气动系数与静态气动系数存在显著差异。不同于静态气动系数,动态气动系数曲线是环形的,多种参数对气动系数影响明显。结果表明,风洞试验结果为覆冰分裂导线运动研究及其防治技术提供了必要的数据。  相似文献   

4.
Determination of the aerodynamic configuration of wake is the key to analysis and evaluation of the rotor aerodynamic characteristics of a horizontal-axis wind turbine.According to the aerodynamic configuration, the real magnitude and direction of the onflow velocity at the rotor blade can be determined, and subsequently, the aerodynamic force on the rotor can be determined. The commonly employed wake aerodynamic models are of the cylindrical form instead of the actual expanding one. This is because the influence of the radial component of the induced velocity on the wake configuration is neglected. Therefore, this model should be called a "linear model". Using this model means that the induced velocities at the rotor blades and aerodynamic loads on them would be inexact. An approximately accurate approach is proposed in this paper to determine the so-called "nonlinear" wake aerodynamic configuration by means of the potential theory,where the influence of all three coordinate components of the induced velocity on wake aerodynamic configuration is taken into account to obtain a kind of expanding wake that approximately looks like an actual one. First, the rotor aerodynamic model composed of axial(central), bound, and trailing vortexes is established with the help of the finite aspect wing theory. Then, the Biot-Savart formula for the potential flow theory is used to derive a set of integral equations to evaluate the three components of the induced velocity at any point within the wake. The numerical solution to the integral equations is found,and the loci of all elementary trailing vortex filaments behind the rotor are determined thereafter. Finally, to formulate an actual wind turbine rotor, using the nonlinear wake model, the induced velocity everywhere in the wake, especially that at the rotor blade,is obtained in the case of various tip speed ratios and compared with the wake boundary in a neutral atmospheric boundary layer. Hereby, some useful and referential conclusions are offered for the aerodynamic computation and design of the rotor of the horizontal-axis wind turbine.  相似文献   

5.
Problems of the numerical simulation of the air flow past buildings and structures are considered using the closed vortex loop method. A mathematical model, based on the vortex approach, of the time-dependent ideal incompressible fluid flow past a system of bodies is proposed. A numerical scheme for solving the problem and an algorithm for calculating the distributed wind loads over the body surface are outlined. An example of calculating the aerodynamic loads is given for a real building and the results are compared with the known results of testing a model of the building in a wind tunnel. An example of the calculation and analysis of the wind distribution over a system of several buildings is also presented.  相似文献   

6.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

7.
Deformation and vibration of twig-connected single leaf in wind is investigated experimentally.Results showthat the Reynolds number based on wind speed and lengthof leaf blade is a key parameter to the aerodynamic problem.In case the front surface facing the wind and with an increase of Reynolds number,the leaf experiences static deformation,large amplitude and low frequency sway,reconfiguration to delta wing shape,flapping of tips,high frequencyvibration of whole leaf blade,recovery of delta wing shape,and twig-leaf coupling vibration.Abrupt changes from onestate to another occur at critical Reynolds numbers.In casethe back surface facing the wind,the large amplitude andlow frequency sway does not occur,the recovered delta wingshape is replaced by a conic shape,and the critical Reynoldsnumbers of vibrations are higher than the ones corresponding to the case with the front surface facing the wind.Apair of ram-horn vortex is observed behind the delta wingshaped leaf.A single vortex is found downstream of theconic shaped leaf.A lift is induced by the vortex,and thislift helps leaf to adjust position and posture,stabilize bladedistortion and reduce drag and vibration.  相似文献   

8.
This article briefly reviews wind turbine aerodynamics, which follows an explanation of the aerodynamic complexity. The aerodynamic models including blade momentum theory, vortex wake model, dynamic stall and rotational effect, and their applications in wind turbine aerodynamic performance prediction are discussed and documented. Recent progress in computational fluid dynamics for wind turbine is addressed. Wind turbine aerodynamic experimental studies are also selectively introduced.  相似文献   

9.
Stay cables of cable-stayed bridges often experience vibrations with large amplitudes induced by wind or jointly by both wind and rain. To understand the aerodynamic characteristics of the stay cables and excitation mechanics of rain–wind-induced vibration (RWIV), an inclined and yawed circular cylinder with and without an artificial upper rivulet is studied through a series of wind tunnel tests. The impacts of upper rivulet and axial flow on the aerodynamics of the cylinder are investigated. It is found that for an inclined and yawed cylinder without rivulet there exists a non-zero lift force at large wind angle. Furthermore, the wind pressures and aerodynamic forces acting on both the cylinder and the upper rivulet are obtained, which can be used to develop more rational theoretical models for RWIV of stay cables. Results show that the upper rivulet can both enhance and depress Karman vortex shedding depending on the position of the rivulet. As a result, dramatic variations of the aerodynamic forces acting on the cylinder and the rivulet will occur, which may eventually result in RWIV. Also axial flow may have a noticeable influence on the aerodynamic characteristics of the inclined and yawed cylinder. And the presence of the rivulet can enhance such influence from the axial flow.  相似文献   

10.
气动阻尼对高层建筑横风向风振响应的影响   总被引:1,自引:0,他引:1  
王辉 《力学与实践》2007,29(5):38-42
引入横风力谱模型,分析了某高宽比为6 的方形截面高层建筑在不同地貌和风速条件下的横风向风振响应. 同时考虑正气动阻尼的影 响,获得该建筑在不同自振基频下的风振响应及气动阻尼影响的规律. 分析结果表 明,对于处于低粗糙度地貌并受较高风速作用的低频建筑物,当计算其横风向风振响应时,应适当考虑 正气动阻尼的影响,使计算结果更具真实性.  相似文献   

11.
A nonlinear aeroelastic analysis method for large horizontal wind turbines is described. A vortex wake method and a nonlinear finite element method (FEM) are coupled in the approach. The vortex wake method is used to predict wind turbine aerodynamic loads of a wind turbine, and a three-dimensional (3D) shell model is built for the rotor. Average aerodynamic forces along the azimuth are applied to the structural model, and the nonlinear static aeroelastic behaviors are computed. The wind rotor modes are obtained at the static aeroelastic status by linearizing the coupled equations. The static aeroelastic performance and dynamic aeroelastic responses are calculated for the NH1500 wind turbine. The results show that structural geometrical nonlinearities significantly reduce displacements and vibration amplitudes of the wind turbine blades. Therefore, structural geometrical nonlinearities cannot be neglected both in the static aeroelastic analysis and dynamic aeroelastic analysis.  相似文献   

12.
风激下结构的紊流诱发振动   总被引:1,自引:0,他引:1  
高耸结构群或桥梁部件在风激下,除了产生经典气动弹性效应外,还会引起结构或部件间的相互动力干涉作用,特别是由于上游结构振荡绕流所形成的紊流激励作用,使得处于尾流场中的结构或部件的动态性能与上游结构有明显的差别。文中报导弹性约束下两H型结构的气动干涉实验结果。依据实验观察到的主要特征分析风激干涉下结构的紊流诱发振动与随机动力稳定性,得出紊流随机响应的解析表达式以及用以确定临界风速的动力稳定性条件,计算  相似文献   

13.
This study elucidates the relation between wake vortex shedding and aerodynamic force fluctuations for a low Reynolds number wing from time resolved particle image velocimetry (TR-PIV) experimental measurements. The results reveal a periodic lift and drag variation within the shedding cycle and resolve the frequencies of those fluctuations from a proper orthogonal decomposition (POD) and power spectral density (PSD) analysis. To show the effect of vortex shedding on the body force fluctuations, the evolution of instantaneous aerodynamic forces is compared to the pressure field of the fluid flow and to the vortical structures in the wake of the airfoil. A six step model describing the vortex-force relation is proposed. It shows that changes in lift such as maximum lift and minimum lift are associated with the detachment of a vortex. It also shows that the minimum or local minimum drag value is obtained at the onset formation of a vortex on the airfoil wake. Similarly, the maximum or local maximum drag is obtained at the onset formation of the saddle on the airfoil wake. The model further explains the asymmetry observed in the unsteady drag force evolution. The model can be used to optimize flow control and fluid-structure interaction applications.  相似文献   

14.
Rain–wind induced vibration of cables in cable-stayed bridges is a worldwide problem of great concern. The effect of the motion of water rivulets on the instability of stay cables has been recognized as one of the mechanisms of this complex phenomenon. In order to investigate how the motion of rivulets affects the unstable vibration of cables without considering the effects of axial flow and axial vortex, a real three-dimensional cable was modeled as a two-dimensional circular cylinder, around which an attachment representing the rivulet can move. This could also be regarded as a new kind of two-dimensional 2-dof dynamic system. This paper studies the aerodynamic instability of the system theoretically and experimentally. Equations governing the motions of the cylinder and the attachment are first established. The Lyapunov stability criterion is applied to the equations of motion to derive the criterion for the unstable balance angle of the attachment. Moreover, a new two-dimensional 2-dof cable model system with a movable attachment is designed and tested in a wind tunnel. Parametric studies are carried out to investigate the effects of major factors such as wind speed, frequency and damping of the dynamic system on the unstable balance angle of the rivulet attachment. Theoretical and experimental results match well. These results may be valuable in elucidating the mechanism of rain–wind induced vibration of stay cables.  相似文献   

15.
鲍欢欢  谷正气  谭鹏 《实验力学》2014,29(4):460-466
汽车尾部湍流场是汽车压差阻力的主要来源,在HD-2汽车模型风洞中,首先使用测力天平和测压系统,对横摆角工况下汽车模型的气动六分力和纵对称截面48个测点的表面压力进行了测量,然后利用PIV测量技术对模型在横摆角分别为0°、15°的尾部湍流场进行了测量,获得该模型尾流场的速度场、涡量场和雷诺应力流场信息,通过计算得出尾流场区域空间相关系数和湍流积分尺度。结果表明:在横摆角工况下,汽车模型尾部涡流的结构呈现向上发展的趋势;尾流场拖拽涡的范围和强度的增大导致了模型气动力出现较大的增加;湍流积分尺度的变化表明,尾部涡流区的分离噪声与涡流分离位置有关,在汽车尾部造型设计中,要尽量推迟尾部涡流的分离。  相似文献   

16.
Overcoming the spatial constraints of the small-scale wind tunnel at Northeastern University, a multi-blade flow device (MBFD) has been installed within the facility’s test chamber to generate ramps in measured wind velocities by redirecting horizontally driven flows. As a continuation feasibility study, this paper analyzes the aerodynamic loads imparted on a building model from these simulated non-stationary outflows. Base forces are recorded with a high-frequency force balance sensor (HFFB) and compared to digital simulations using a modified quasi-steady aerodynamic load approach. Under certain conditions, the forces obtained from both physical and numerical procedures coincide well with each other, although differences arise due to assumptions and deficiencies in the modeling. Nonetheless, results indicate that altering horizontal flows with this device is suitable for replicating non-stationary aerodynamic loads, within the confines of a small-scale wind, “straight” tunnel.  相似文献   

17.
An experiment on vortex-induced dynamic loads on a non-spinning Volleyball was conducted in a wind tunnel. The flow past the Volleyball was visualized, and the aerodynamic load was measured by use of a strain gauge balance. The separation on the Volleyball was measured with hot-film. The experimental results suggest that under the action of an unstable tail vortex system the separation region is changeable, and that the fluctuation of drag and lateral forces is the same order of magnitude as the mean drag, no matter whether the seam of the Volleyball is symmetric or asymmetric, with regard to the flow. Based on the experimental data a numerical simulation of Volleyball swerve motion was made.  相似文献   

18.
基于(势流)涡尾迹方法开发了水平轴风力机叶片气动性能分析程序,采用固定尾迹涡模型和自由尾迹模型分别对气动设计性能进行计算分析,得到风力机设计工况下的涡位置、诱导因子、功率系数及扭矩系数等气动性能参数,并与设计结果对比。结果表明,涡尾迹方法能够快速准确地计算风力机叶片气动性能参数,对风力机叶片气动分析,固定尾迹涡模型较自由尾迹模型计算时间短,具有较好的实用性。  相似文献   

19.
鹅掌楸树叶在风中的变形与振动   总被引:2,自引:0,他引:2  
邵传平  朱园园 《力学学报》2017,49(2):431-440
树叶的空气动力与流固耦合特性研究在树木保护、新发电技术开发、太阳能帆板设计等方面具有重要意义.Vogel首次发现树叶在较高风速下具有形状重构以避免受损害的能力.Vogel实验时叶柄端部是简支的,与叶柄与树枝的自然连接方式不同.在本文的研究中,叶柄端部是固支的,叶片垂直悬挂,正面或反面迎风.在风速0~27 m/s范围内,存在两种叶片静止状态,即飞翼形稳定和锥形稳定;还有3种叶片振动状态,即低频摆动、第1和第2高频振动.这5种状态由5个临界风速决定.通过70余片树叶测试结果的统计,得到了树叶每个状态存在的概率,及每个临界风速的期望值.流动显示发现树叶变形后其尾流中存在旋涡脱落现象.天平测量发现叶片阻力系数随叶片雷诺数的增大而减小并逐渐接近于0.1.引入悬臂梁模型,采用测量的叶片气动力,对叶柄静态弯曲形状进行计算,结果表明当风速由0逐渐增至5 m/s时,叶柄向下游弯曲迅速;但风速由5 m/s进一步增大时,向下游的弯曲则变慢.  相似文献   

20.
Fluctuating wind pressures acting on bluff bodies are influenced by approaching turbulence and signature (body-induced) turbulence. For a circular cylinder, the signature turbulence is closely related to the formation of Karman vortex shedding. In this paper, proper orthogonal decomposition (POD) and spectral proper transformation techniques (SPT) are applied to the pressure fluctuations acting on a circular cylinder. The physical relationships between the decomposed modes and vortex shedding are discussed to identify the dominant aerodynamic behavior (lift or drag) and to evaluate its contribution to overall behavior. The effect of Reynolds number (Re) is also addressed. It is found that the application of POD and SPT can separate the along-wind and across-wind effects on the cylinder model in both subcritical and supercritical regimes. In contrast to POD, the SPT mode is formulated in the frequency domain, and the dynamic coherent structures can be defined in terms of amplitude and phase angle, which allows detection of the advection features of vortex shedding. In addition, it is observed that the energy contribution of the shedding induced lift force increases with Re and gradually becomes a dominant aerodynamic force at Reynolds numbers in the supercritical regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号