首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
宋文辉  姚军  张凯 《力学学报》2021,53(8):2179-2192
页岩储层孔隙结构复杂, 气体赋存方式多样. 有机质孔隙形状对受限空间气体吸附和流动规律的影响尚不明确, 导致难以准确认识页岩气藏气体渗流机理. 为解决该问题, 本文首先采用巨正则蒙特卡洛方法模拟气体在不同形状有机质孔隙(圆形孔隙、狭长孔隙、三角形孔隙、方形孔隙)内吸附过程, 发现不同形状孔隙内吸附规律符合朗格缪尔单层吸附规律, 分析了绝对吸附量、过剩吸附浓量、气体吸附参数随孔隙尺寸、压力的变化, 研究了孔隙形状对气体吸附的影响. 在明确不同形状有机质孔隙内气体热力学吸附规律基础上, 建立不同形状有机质孔隙内吸附气表面扩散数学模型和考虑滑脱效应的自由气流动数学模型, 结合分子吸附模拟结果研究了不同孔隙形状、孔隙尺寸有机质孔隙内吸附气流动与自由气流动对气体渗透率的贡献. 结果表明, 狭长孔隙内最大吸附浓度和朗格缪尔压力最高, 吸附气表面扩散能力最弱. 孔隙半径5 nm以上时, 吸附气表面扩散对气体渗透率影响可忽略. 本文研究揭示了页岩气藏实际生产过程中有机质孔隙形状对页岩气吸附和流动能力的影响机制.   相似文献   

2.
Gas production from shale gas reservoirs plays a significant role in satisfying increasing energy demands. Compared with conventional sandstone and carbonate reservoirs, shale gas reservoirs are characterized by extremely low porosity, ultra-low permeability and high clay content. Slip flow, diffusion, adsorption and desorption are the primary gas transport processes in shale matrix, while Darcy flow is restricted to fractures. Understanding methane diffusion and adsorption, and gas flow and equilibrium in the low-permeability matrix of shale is crucial for shale formation evaluation and for predicting gas production. Modeling of diffusion in low-permeability shale rocks requires use of the Dusty gas model (DGM) rather than Fick’s law. The DGM is incorporated in the TOUGH2 module EOS7C-ECBM, a modified version of EOS7C that simulates multicomponent gas mixture transport in porous media. Also included in EOS7C-ECBM is the extended Langmuir model for adsorption and desorption of gases. In this study, a column shale model was constructed to simulate methane diffusion and adsorption through shale rocks. The process of binary \(\hbox {CH}_{4}{-}\hbox {N}_{2}\) diffusion and adsorption was analyzed. A sensitivity study was performed to investigate the effects of pressure, temperature and permeability on diffusion and adsorption in shale rocks. The results show that methane gas diffusion and adsorption in shale is a slow process of dynamic equilibrium, which can be illustrated by the slope of a curve in \(\hbox {CH}_{4}\) mass variation. The amount of adsorption increases with the pressure increase at the low pressure, and the mass change by gas diffusion will decrease due to the decrease in the compressibility factor of the gas. With the elevated temperature, the gas molecules move faster and then the greater gas diffusion rates make the process duration shorter. The gas diffusion rate decreases with the permeability decrease, and there is a limit of gas diffusion if the permeability is less than \(1.0\,\times \,10^{-15}\, \hbox { m}^{2}\). The results can provide insights for a better understanding of methane diffusion and adsorption in the shale rocks so as to optimize gas production performance of shale gas reservoirs.  相似文献   

3.
变压吸附过程是一个动态变压力变质量多孔介质流动与传热传质过程,揭示过程的流动特性是深入研究吸附机理的基础.基于严格质量守恒和动量守恒, 建立了吸附床内的气体流体、吸附传质的数学模型,以某轴向流快速空分制氧吸附床为研究对象, 对吸附床内全循环过程进行了模拟, 对升压吸附、降压解吸和常压清洗各个阶段的流动特性进行了详细的分析,并与空床、有料无吸附时的流动特性进行了对比.   相似文献   

4.
孔隙介质中稠油流体非线性渗流方程   总被引:4,自引:2,他引:2  
为揭示稠油流体在油藏孔隙中渗流特性,基于力学平衡方程,建立了描述稠油流体渗流特征的非线性渗流方程,对油藏孔隙中稠油渗流过程及启动机理进行了深入分析,着重分析了边界层、流体屈服应力以及表面力对渗流过程的影响.结果表明,Hagen-Poiseuille定律需经修正方能描述稠油流体流动,边界层、流体屈服应力以及表面力对稠油渗流影响非常显著.孔隙中,稠油启动压力梯度来源于其屈服应力、表面力,边界层加剧了渗流非线性程度,实际稠油油藏开发中,要充分掌握稠油渗流非线性特征.   相似文献   

5.
唐巨鹏  田虎楠  潘一山 《力学学报》2021,53(8):2193-2204
煤系页岩瓦斯主要以吸附态和游离态形式存在, 其解吸过程相对吸附过程具有普遍滞后现象, 因此从微细观角度定量研究其吸附?附解吸迟滞规律对页岩气井后期稳产增产具有重要意义. 在前人研究基础上结合核磁共振谱理论推导出能够准确表征煤系页岩瓦斯吸附?解吸迟滞效应微细观评价模型, 并采用核磁共振谱测试技术, 以双鸭山盆地东保卫煤矿三采区36# 煤层底板煤系页岩为研究对象, 进行煤系页岩瓦斯吸附?解吸迟滞效应核磁共振谱实验, 模拟不同储层原位应力状态煤系页岩瓦斯迟滞效应发生全过程, 进一步对吸附态瓦斯、游离态瓦斯以及微细观方法测定的宏观瓦斯迟滞规律进行定量化研究, 并对其发生机理以及其对深部煤系页岩瓦斯开采影响进行了初步探究. 结果表明: 应力状态下吸附态和游离瓦斯均有滞后效应; 瓦斯宏观迟滞系数与平均有效应力呈幂函数关系, 而瓦斯宏观迟滞效应中由吸附态或游离态瓦斯引起的迟滞系数与平均有效应力关系均可采用二次多项式拟合; 孔裂隙应力损伤和微孔隙瓦斯扩散受限耦合或许是煤系页岩瓦斯吸附?解吸迟滞效应产生根本原因之一.   相似文献   

6.
Laboratory test of coal permeability is generally conducted under the condition of gas adsorption equilibrium, and the results contribute to an understanding of gas migration in the original coal seams. However, gas flow under the state of non-equilibrium, accompanied by gas adsorption and desorption, is more common in coalbed methane (CBM) recovery and \(\hbox {CO}_{2}\) geological sequestration sites. Therefore, research on gas migration under the non-equilibrium state has a greater significance with regard to CBM recovery and \(\hbox {CO}_{2}\) geological sequestration. However, most permeability models, in which only one gas pressure has been considered, cannot be used to study gas flow under the non-equilibrium state. In this study, a new mathematical model, which includes both fracture gas pressure and matrix gas pressure, and couples the gas flow with the coal deformation, has been developed and verified. With the developed model, the spatial and temporal evolution of gas flow field during gas adsorption and desorption phases has been explored. The results show that the gas pressures present nonlinear distributions in the coal core, and the matrix gas pressure is generally lower than the fracture gas pressure during adsorption, but higher than the fracture gas pressure during desorption. For gas flow during adsorption, the main factor controlling permeability varies at different points. At the initial time, the permeability is dominated by the effective stress, and at the later time, the permeability in the part close to the gas inlet is mainly controlled by the matrix swelling, whereas that in the part close to the gas outlet is still dominated by the effective stress. For gas flow during desorption, from the gas inlet to the gas outlet, the permeability deceases at the initial time, and when the time is greater than 10,000 s, it shows a decreasing and then an increasing trend. The reason is that at the initial time, the permeability is dominated by the increased effective stress caused by the sharp decrease of the fracture gas pressure. Later, desorption of the adsorbed gas results in matrix shrinkage, which further leads to an increase of the permeability.  相似文献   

7.
页岩气吸附解吸规律研究   总被引:5,自引:0,他引:5  
张志英  杨盛波 《实验力学》2012,27(4):492-497
页岩中天然气的吸附解吸规律是页岩气开发的基础。根据物质平衡原理,自行设计了页岩气吸附解吸实验装置。用该装置对取自鄂尔多斯盆地的三个页岩岩样在不同温度(30~90℃)、不同压力(0.1~10MPa)条件下,进行页岩气吸附及解吸规律研究。实验结果表明,吸附量随有机碳含量的增加而增大;随压力的增加吸附量增大,而随温度的增大吸附量减小。同一温度压力条件下,相对吸附过程而言,解吸过程有滞后现象,解吸不够彻底。对粘土含量较大的页岩,朗格缪尔模型拟合效果较差,而利用修正的双朗格缪尔模型可以得到较好的拟合结果。  相似文献   

8.
页岩黏土孔隙含水饱和度分布及其对甲烷吸附的影响   总被引:1,自引:0,他引:1  
考虑储层原始含水特征,甲烷在页岩的吸附特征属于气液固三相复杂作用结果,水分在很大程度上影响页岩吸附能力,将成为制约页岩气资源量评估可靠性的主要原因之一.鉴于页岩水分主要分布于黏土等无机矿物孔隙内部,分析了甲烷-水膜-页岩黏土三相作用特征,结果表明:甲烷在干燥黏土表面吸附满足气固界面Langmuir吸附特征,在黏土水膜表面吸附满足气液界面Gibbs吸附特征,在气液固三相作用下满足"气固"与"气液"界面混合吸附特征;同时研究还发现:不同尺度孔隙内含水饱和度分布特征存在差异,部分小孔隙可以被水分充满,而大孔隙仅吸附一定厚度水膜.因此,水分对甲烷吸附能力的影响主要表现为两个方面:小孔隙被水分阻塞而失去吸附能力;大孔隙表面水膜改变甲烷吸附特征(气固界面吸附转变为气液界面吸附),以黏土样品为例,两者综合效应可以致使甲烷吸附能力降低约90%.从微观角度揭示了水分对页岩吸附能力的影响机理,将为建立合理评价页岩吸附气含量的方法奠定理论基础.  相似文献   

9.
An analytical solution is obtained to a system of equations describing the nonequilibrium adsorption of a radioactive gas, which is moving with a constant velocity in a semi-infinite, sorbing medium, for a boundary condition depending arbitrarily on the time. An investigation is made of the case of the nonequilibrium adsorption of a motionless gas. The solution is also investigated for a boundary condition in the form of a δ-function. It is shown that, in distinction from equilibrium adsorption, in the medium there are propagated, generally speaking, two maxima of the concentration, one of which arrives at a given point without a lag, while the second lags. Approximate solutions are obtained for strongly washed-out and δ-shaped pulses.  相似文献   

10.
海陆过渡相页岩气藏不稳定渗流数学模型   总被引:1,自引:1,他引:0  
海陆过渡相页岩常与煤层和砂岩呈互层状产出, 储层连续性较差、横向变化快、非均质性强, 水力压裂技术是其获得经济产量的关键手段. 然而, 目前缺乏有效的海陆过渡相页岩气藏不稳定渗流数学模型, 对其渗流特征分析及储层参数评价不利. 针对这一问题, 首先建立海陆过渡相页岩气藏压裂直井渗流数学模型, 其次采用径向复合模型来反映强非均质性, 采用Langmuir等温吸附方程来描述气体的解吸和吸附, 分别采用双重孔隙模型和边界元模型模拟天然裂缝和水力裂缝, 建立并求解径向非均质的页岩气藏压裂直井不稳定渗流数学模型, 分析海陆过渡相页岩气藏不稳定渗流特征, 并进行数值模拟验证和模型分析应用. 分析结果表明, 海陆过渡相页岩气藏不稳定渗流特征包括流动早期阶段、双线性流、线性流、内区径向流、页岩气解吸、内外过渡段、外区径向流及边界控制阶段. 将本模型应用在海陆过渡相页岩气试井过程中, 实际资料拟合效果较好, 其研究成果可为同类页岩气藏的压裂评价提供一些理论支撑, 具有较好应用前景.   相似文献   

11.
邓佳  吕子健  张奇  宋付权  李久江  赵广杰 《力学学报》2021,53(10):2880-2890
利用CO2开采页岩气不仅能够提高页岩气采收率, 还能够节省水资源并且对CO2进行地质封存, 有助于实现页岩气开采过程的碳中和. 富有机质页岩储层纳微米孔隙中气体运移机制不同于常规储层, CO2在储层中具有超临界特性, 致使开采机理复杂, 无法得到CO2开采页岩气微观机理的准确认识, 所以研究CH4, CO2及其二元混合物在页岩储层纳微米孔隙中的吸附及驱替特性对准确评估和高效开采页岩气至关重要. 本文从实验、理论以及模拟方面对页岩储层纳微米孔隙中CH4的吸附特性、CO2/CH4二元混合物竞争吸附特性以及驱替特性进行了综合分析, 对气体在纳微米孔隙中吸附及驱替特性的基础研究及关键问题进行讨论分析并提出了展望. 研究表明CH4在页岩储层中表现为物理吸附, 有机质特征(丰度、成熟度、类型)、孔隙结构、无机矿物组成、温度和压力、含水率对页岩的CH4吸附能力均有一定程度的影响. 在相同条件下, CO2比CH4更易被页岩储层吸附, 在页岩储层中注入CO2可以促进CH4的解吸, 并有利于CO2的地质埋存. 开采方案的部署可采用井网形式的注采方式, 可以通过调整注入井的位置、数量以及CO2注入速率对开采方案进行优化.   相似文献   

12.
The joint adsorption of silver and water vapors on an ideal substrate is studied in a numerical experiment using a modified Langmuir adsorption model. The calculations reveal a number of previously unknown phenomena. It is established that the adsorption and condensation of silver vapor stimulate the adsorption of water vapor, resulting in its capillary condensation at the molecular level even at low saturation. It is shown that the rate of capillary condensation depends on the wetting angle of water on silver, and there is a characteristic wetting angle at which the rate of capillary condensation changes radically. It is also found that water vapor has a significant effect on the adsorption of silver vapor and the structure of its condensate on the substrate: the presence of water vapor reduces the adsorption of silver atoms on the substrate and weakens the adhesion of silver condensate to the substrate. The results can be used to study two-component adsorption and capillary condensation and to develop technologies for growing thin films in a gas phase.  相似文献   

13.
页岩气开发过程中,生产井产出气的组分比例会随时间发生变化.本文基于组分模型数值模拟研究了生产井中甲烷组分比例变化的规律.研究表明,吸附气、渗透率与孔隙度影响页岩气组分比例的瞬态响应特征. 吸附气显著影响组分比例的变化规律,吸附量的大小决定组分比例的变化值及组分比例导数曲线的上下位置. 渗透率影响组分比例初期变化规律,但在后期,不同渗透率对瞬态组分比例规律的影响基本一致.孔隙度对组分比例变化及其导数曲线的影响与吸附气的影响类似,但在生产初期,孔隙度对组分比例的影响要小于吸附气对组分比例的影响. 本文的研究提供了一种进行页岩地层参数评价的新方法.   相似文献   

14.
In coalbeds and shales, gas transport and storage are important for accurate prediction of production rates and for the consideration of subsurface greenhouse gas sequestration. They involve coupled fluid phenomena in porous medium including viscous flow, diffusive transport, and adsorption. Standard approach to describe gas–matrix interactions is deterministic and neglects the effects of local spatial heterogeneities in porosity and material content of the matrix. In this study, adopting weak-noise and mean-field approximations and using a statistical approach in spectral domain, matrix heterogeneity effects are investigated in the presence of non-equilibrium adsorption with random partition coefficient. It is found that the local heterogeneities can generate non-trivial transport and kinetic effects which retard gas release from the matrix and influence the ultimate gas recovery adversely. Macro-transport shows 1/[1 + N Pe /(1 + N Pe )] dependence on the Péclet number, and persists at the diffusive ultra-low permeability limit. Macro-kinetics is directly related to Thiele modulus by the following expression: N Th /(1 + 2N Pe ). It leads to trapping of gas in the adsorbed phase during its release from the matrix, and to an adsorption threshold during the gas uptake by the matrix. Both effects are proportional to the initially available adsorbed gas amount and becomes more pronounced with the increasing variance of the porosity field. Consequently, a new upscaled deterministic gas mass balance is proposed for practical purposes. Numerical results are presented showing free and adsorbed gas distributions and fractional gas sorption curves for unipore coal matrix exhibiting Gaussian porosity distribution. This study is a unique approach for our further understanding of the coalbeds and gas shales, and it is important for the development of sound numerical gas production and sequestration models.  相似文献   

15.
Methane/carbon dioxide/nitrogen flow and adsorption behavior within coal is investigated simultaneously from a laboratory and simulation perspective. The samples are from a coalbed in the Powder River Basin, WY. They are characterized by methane, carbon dioxide, and nitrogen sorption isotherms, as well as porosity and permeability measurements. This coal adsorbs almost three times as much carbon dioxide as methane and exhibits significant hysteresis among pure-component adsorption and desorption isotherms that are characterized as Langmuir-like. Displacement experiments were conducted with pure nitrogen, pure carbon dioxide, and various mixtures. Recovery factors are greater than 94% of the OGIP. Most interestingly, the coal exhibited ability to separate nitrogen from carbon dioxide due to the preferential strong adsorption of carbon dioxide. Injection of a mixture rich in carbon dioxide gives slower initial recovery, increases breakthrough time, and decreases the volume of gas needed to sweep out the coalbed. Injection gas rich in nitrogen leads to relatively fast recovery of methane, earlier breakthrough, and a significant fraction of nitrogen in the produced gas at short times. A one-dimensional, two-phase (gas and solid) model was employed to rationalize and explain the experimental data and trends. Reproduction of binary behavior is characterized as excellent, whereas the dynamics of ternary systems are predicted with less accuracy. For these coals, the most sensitive simulation input were the multicomponent adsorption–desorption isotherms, including scanning loops. Additionally, the coal exhibited a two-porosity matrix that was incorporated numerically.  相似文献   

16.
研究页岩的水分传输特征至关重要,不仅有助于认识页岩的物理化学性质,而且也有助于评价页岩气的吸附扩散和流动能力.本文设计了页岩的水分传输实验装置,采用美国伍德福德和中国南方龙马溪组页岩为研究对象,开展了不同温度、不同湿度下页岩的水分传输实验,研究了页岩的水分传输特征和影响因素.结果表明,页岩的水分吸附属于II型曲线,包含着单分子层吸附、多分子层吸附和毛细凝聚的过程,GAB模型可用于描述页岩的水分吸附过程;水分吸附随着相对压力的增大而增强,有机碳含量和温度对页岩水分吸附起着增强作用,而方解石会抑制页岩的水分吸附;随着相对压力的增大,页岩的水分扩散系数呈现先增大后减小随后增加的趋势,其系数大约在8.73$\times$10$^{ - 9}\sim $5.95$\times $10$^{ - 8 }$m$^{2}$/s之间;伍德福德页岩的等量吸附热均大于龙马溪页岩的等量吸附热,这与其页岩的成熟度有关.研究结果为认识页岩的物理化学性质和力学性能以及评价页岩气的吸附流动能力提供参考依据.   相似文献   

17.
煤在瓦斯一维渗流作用下的初次破坏   总被引:10,自引:0,他引:10  
作者观察了煤在瓦斯一维渗流作用下的初次破坏,发现破坏煤体呈球冠状;临界破坏瓦斯超压取决于卸载条件,煤型的强度、半径和长度,以及煤型所受的侧压,但与瓦斯吸附特性无关。对实验例进行了数值分析,结果表明煤体的破坏属于拉伸破坏;卸载速率的增高,侧向围压的减小与煤型几何半径的增大将使得煤体在瓦斯渗流作用下更易于破坏。  相似文献   

18.
Experimental and numerical investigations were conducted to study adsorption and desorption of pure and multicomponent gas on coal, and the sorption-induced volumetric strain and permeability change of the coal. This paper presents the experimental work. Using CO \(_2\) , N \(_2\) , and CO \(_2\) and N \(_2\) binary mixtures of different composition as injection gases, the measurements were conducted on a cylindrical composite coal core at varying pore pressures and constant effective confining pressure. Sorption was measured using a volumetric method. The initial and equilibrium system pressure and gas phase composition were measured. The total amount of adsorption and the composition of the adsorbed phase (for adsorption of binary gas mixtures) were calculated based on material balance. During the process of sorption, the volume of the core was monitored by recording the volume of the water in the confining pressure vessel. Sorption-induced strain was calculated as the ratio of the sorption-induced volumetric change to the initial volume of the core. After adsorption equilibrium was reached, the permeability of the core was measured based on the Darcy equation for gas flow. Sorption and permeability measurements were conducted for each test gas at first increasing and then decreasing pressures. Volumetric strain was only measured while pore pressure increased. To our knowledge, this is the first study measuring adsorption, volumetric strain, and permeability on the same piece of core with the same apparatus.  相似文献   

19.
Zhang  Yongchao  Zeng  Jianhui  Cai  Jianchao  Feng  Sen  Feng  Xiao  Qiao  Juncheng 《Transport in Porous Media》2019,126(3):633-653

Shale reservoirs are characterized by very low permeability in the scale of nano-Darcy. This is due to the nanometer scale of pores and throats in shale reservoirs, which causes a difference in flow behavior from conventional reservoirs. Slip flow is considered to be one of the main flow regimes affecting the flow behavior in shale gas reservoirs and has been widely studied in the literature. However, the important mechanism of gas desorption or adsorption that happens in shale reservoirs has not been investigated thoroughly in the literature. This paper aims to study slip flow together with gas desorption in shale gas reservoirs using pore network modeling. To do so, the compressible Stokes equation with proper boundary conditions was applied to model gas flow in a pore network that properly represents the pore size distribution of typical shale reservoirs. A pore network model was created using the digitized image of a thin section of a Berea sandstone and scaled down to represent the pore size range of shale reservoirs. Based on the size of pores in the network and the pore pressure applied, the Knudsen number which controls the flow regimes was within the slip flow regime range. Compressible Stokes equation with proper boundary conditions at the pore’s walls was applied to model the gas flow. The desorption mechanism was also included through a boundary condition by deriving a velocity term using Langmuir-type isotherm. It was observed that when the slip flow was activated together with desorption in the model, their contributions were not summative. That, is the slippage effect limited the desorption mechanism through a reduction of pressure drop. Eagle Ford and Barnett shale samples were investigated in this study when the measured adsorption isotherm data from the literature were used. Barnett sample showed larger contribution of gas desorption toward gas recovery as compared to Eagle Ford sample. This paper has produced a pore network model to further understand the gas desorption and the slip flow effects in recovery of shale gas reservoirs.

  相似文献   

20.
Yang  Kang  Zhou  Junping  Xian  Xuefu  Zhang  Chengpeng  Tian  Shifeng  Dong  Zhiqiang  Fan  Maolin  Cai  Jianchao 《Transport in Porous Media》2021,140(3):763-788
Transport in Porous Media - To better understand the CO2 sequestration and enhanced shale gas recovery, it is of great significance to study the adsorption characteristics of CO2 and CH4 in...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号