首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用RNG k-ε湍流模型模拟下击暴流场,在与已有建筑下击暴流场试验数据进行对比验证的基础上,模拟分析了下击暴流对双坡屋面建筑的风压作用;侧重考虑了建筑处于下击暴流径向最大风速位置(r/D_0=1.0)处,风向与坡角变化及有无挑檐对风压分布的影响。分析结果表明:风向与坡角的变化对表面风压有显著影响,坡角变化时,屋面风荷载体型系数最大增幅达到152.2%;随风向角增大,迎风面总体风荷载体型系数呈显著减小趋势,而背风面的负压绝对值则有较大提高,其系数变化幅度达到120.7%;因风向变化,侧风面风荷载体型系数出现261.4%的增幅;有无挑檐对建筑表面风压也产生影响,但主要表现在迎风面近挑檐区域的风压发生较大改变。  相似文献   

2.
基于Fluent软件平台,采用雷诺应力模型(RSM),对一类实际瓦屋面双坡低矮建筑的风荷载特性进行了研究.首先通过对TTU标准模型的计算,验证了本文数值模拟方法的可行性并确定了合适的网格及计算参数.然后以实际瓦屋面双坡低矮建筑作为典型计算模型,对三种不同屋盖的体型系数进行了数值模拟,将实际瓦屋面模型与风洞试验模型进行了对比分析,并分析了不同风向下瓦片屋盖对于屋面风压的影响.结果表明,实际瓦屋面模型的风压值整体上比风洞试验简化模型的风压值要小,两模型的风压差值从0°风向到90°风向呈递减趋势,且迎风面各分块的风压差普遍大于背风面各分块的风压差.结果还表明,在各风向角下,瓦片屋盖对屋面风压的影响程度不一,且折线瓦对风压的影响相比波形瓦要大.  相似文献   

3.
为研究局部开洞的落地四坡房屋表面风压分布,基于流体动力学和大气边界层基本理论,运用FLUENT软件并借助开洞TTU标准模型的现场实测试验数据,分析与探讨了数值风洞尺寸、离散格式、求解算法、网格划分技术等关键参数及技术,建立了开洞落地四坡房屋的数值风洞。在此基础上,以洞口大小、洞口位置及单面、多面开洞为分析变量,进行了59种开洞房屋工况表面风压分布数值模拟,得到了各变量对房屋表面风压分布,提出了整体结构抗风设计的风荷载体型系数。分析结果表明:开洞对落地四坡房屋风压分布影响显著,风压数值变化大,甚至出现正负压交变;迎风面单面开洞时最为不利,屋盖的风压系数峰值高达-1.24,设计及使用时应引起足够的重视。  相似文献   

4.
基于CFD数值模拟方法,采用RNG k-ε湍流模型对某体育场阶梯型悬挑屋盖风压进行了模拟研究。分析了屋盖风压分布特性及风向对风压的影响;并且考虑周边建筑对风场的扰动影响,引入风压系数干扰因子IF量化分析了周边建筑对体育场屋盖风压分布的气动干扰效应。结果表明:此类阶梯型大跨屋盖主要受风吸力作用,屋盖檐口、角部区域的风压系数量值较大;0°和180°风向角下平均风压随测点位置变化趋势大致相同,风压在台阶转折处发生突变;屋盖各区域的风载体型系数对风向角的敏感程度存在较大差异;周边建筑对屋盖风压主要起遮挡效应,对屋盖某些局部区域的风压起放大效应。  相似文献   

5.
多跨锯齿屋面因其具有跨度大、结构轻盈的特点成为典型的风灾易损结构。目前国内规范对锯齿屋盖的风荷载规定较为粗略,简单给定了统一的风压系数参考值,在实际工程应用中具有一定的局限性。本文以某4跨锯齿房屋为研究对象,通过风洞试验测试了15°、21°、26°、30°和40°等5种不同屋面坡度对锯齿屋盖风压特性的影响。试验结果表明,我国建筑结构荷载规范GB 50009-2012关于锯齿屋面的负风压系数绝对值明显偏小,锯齿屋面最不利均面积负风压系数随着坡度的增加逐渐从高屋角(HC)区转移到屋面边区(SE),且与HC区相反,SE区内的最不利负风压系数绝对值随角度增加而增大;锯齿中间B、C跨最不利均面积负风压系数始终出现在HE区,其绝对值随角度增加而增大,而尾跨D则出现在SE区,且随角度增加而减小;屋面最不利极值负风压系数为-9.6,随着屋面坡度的增大,屋面的最大极值负风压系数绝对值逐渐减小。此外,以各坡度屋面负风压系数的分布为依据,给出了不同屋面坡度范围和不同跨屋面风压系数分区划分建议。  相似文献   

6.
王辉  刘敏  胡正生  郑吉丰  王静峰 《应用力学学报》2020,(1):351-358,I0024,I0025
以苏州太平金融大厦为工程背景,针对其大跨裙摆屋盖的风荷载作用,首先采用RNG k-ε模型模拟分析了其平均风压分布规律,以及风向变化对屋盖表面风荷载体型系数的影响;其次,引入干扰因子IF,探讨了周边建筑对大跨裙摆屋盖风荷载的气动干扰作用。结果表明:0°风向下,走廊上方屋盖两侧区域出现“上吸下顶”的叠加作用;90°风向下屋盖北侧飘带末端区域受到狭道风效应出现正压集中现象;风向变化对大跨裙摆屋盖的风荷载体型系数分布影响较大;且周围建筑物对大跨裙摆屋盖的气动干扰效应明显,主要表现为风压“遮挡效应”,而局部区域表现为风压“放大效应”。  相似文献   

7.
采用CFD数值模拟技术,对处于C类地貌风场中由3栋建筑形成的单列建筑群进行静力风荷载和风场的数值模拟.数值模拟采用良好适应性的非结构化四面体单元进行网格划分,侧重模拟分析了各风向角下建筑间距的改变引起面平均风压系数的改变,由此得到了此类群体建筑表面风压系数干扰因子在各风向角下随建筑间距变化的分布规律和特征.  相似文献   

8.
采用CFD数值模拟技术,对处于C类地貌风场中由3栋建筑形成的单列 建筑群进行静力风荷载和风场的数值模拟. 数值模拟采用良好适应性的非结构化四面体单元 进行网格划分,侧重模拟分析了各风向角下建筑间距的改变引起面平均风压系数的改变,由 此得到了此类群体建筑表面风压系数干扰因子在各风向角下随建筑间距变化的分布规律和特 征.  相似文献   

9.
随着建筑高度的增加,结构自振周期延长,抗侧刚度相对变小,风荷载效应增大。本文以200m高的高层建筑为研究对象,基于风洞试验所得的横风向风压时程数据对其结构进行了计算。试验模型缩尺比为1/400。试验取风向角从0°到45°,每级风向角增量为5°,模拟了两种地面粗糙度。对试验数据进行了迎风面和背风面气动效应的分析。考虑结构第一模态振型发生的位移,由振型分解法按Duhamel积分获得了结构顶点位移和顶点加速度,探讨了结构响应最大值和标准差与风向角、结构自振基频、地面粗糙度等因素的关系。研究表明:风荷载效应与风向角有密切的联系,结构最大响应一般发生在0°。  相似文献   

10.
从高烟囱余留支撑体截面的中性轴方程出发,推导顺风荷载与横风共振共同作用下,高烟囱定向爆破倾倒偏转角的修正公式,研究不同风级(4~6级)、不同切口角(190°~220°)、不同风向角(0°~180°)对爆破倾倒偏转角的影响规律,并对最大偏转角的绝对值和产生条件进行讨论,最后以南昌电厂210m高烟囱的爆破参数设计和触地防护过程为例进行验证。计算表明,对于高耸烟囱,考虑横风共振后倾倒偏转角显著增大,是顺风引起偏转角的4~5倍;风级一定的条件下,存在最不利风向角,致使烟囱产生最大偏转角;最大倾倒偏转角随着风力等级的增大而增大,随着切口角的增大而减小。  相似文献   

11.
在实际结构中球形储煤仓的网壳结构都与输煤栈桥相连,栈桥洞口的存在会使网壳表面风荷载变化更为复杂,我国现行规范中对网壳上开洞口的特殊建筑风压没有明确的设计规定。基于此,运用FLUENT软件和计算流体力学(CFD),采用SST?-?湍流模型,对开洞煤仓球面网壳的风荷载分布规律进行了数值风洞计算。分析了当矢跨比、来流风速、网壳高度、风向角、球面半径、栈桥洞口尺寸改变的情况下网壳表面的风压系数分布规律。分析结果表明,矢跨比、风向角、球面半径对网壳表面风压分布有较大影响。栈桥洞口尺寸对网壳表面局部的风压系数有较大影响,针对此种特殊结构推导出了计算风压系数的拟合公式,并将公式应用到已有的风洞实验结果,发现风压分布变化规律大致相同,拟合情况较好。  相似文献   

12.
针对布局变化对高层建筑下击暴流场气动干扰特性研究的缺乏,采用RNG k-ε湍流模型封闭求解N-S方程的RANS方法模拟下击暴流场,在与已有单体高层建筑下击暴流场试验数据进行对比验证的基础上,模拟研究两幢高层建筑布局的下击暴流风效应场。考虑建筑布局距风暴中心距离变化以及布局纵横向间距变化时,施扰建筑对受扰建筑立面风压的影响,获取立面风压干扰规律与特性。结果表明:受扰建筑迎风面干扰因子随风暴中心距离的增大而增大,突出表现在较大距离区间(r2D),且干扰作用随布局纵横向间距的变化存在较明显差异;当距风暴中心较近时(r2D),布局纵横方向间距变化对受扰建筑干扰因子的影响较小;在径向最大风速位置处(r/D=1.0),临近施扰建筑的受扰建筑侧风面风压相对单体情况有所减小,其干扰因子随布局纵向间距的增大而减小,随横向间距的增大而增大。  相似文献   

13.
张彩成  王国砚 《力学季刊》2013,34(1):125-132
基于Fluent软件平台,采用混合网格划分,选用Realizable k-ε湍流模型,对某自然通风器的风场进行三维数值模拟研究.选择0°、45°、90°、135°和180°等风向,每个风向考虑39m/s风速,此外对0°、180°两风向还考虑了57m/s风速.通过模拟,得到了主通风器导流片的风载体型系数.经计算,0°,180°两个风向的风场对导流片抗风影响较大,基于此对这两个风向的计算结果进行了详细分析.在数值模拟过程中引人多孔介质阶跃模型模拟次通风器导流片,在降低模型复杂程度和减少计算量的同时,保证了数值模拟结果的可靠性.分析表明,基于数值模拟方法得到的风载体型系数在不同风向和风速的情况下呈现一定的变化规律性,为确定自然通风器类结构的风载体型系数提供了合理依据.  相似文献   

14.
考虑流固耦合作用的充气膜结构风压分布研究   总被引:2,自引:2,他引:0  
充气膜结构是典型的风敏感型柔性结构,风荷载经常起关键的控制作用。本文利用ANSYS14.5程序中的workbench平台,考虑流固耦合作用,研究矩形平面气承式充气膜结构的风压系数分布。其中,选用基于雷诺时均模拟法的RNGk-ε湍流模型进行风场模拟,采用弱耦合分析方法模拟流固耦合风荷载效应。分析的参数选择风向角、结构内压、矢跨比和平面长宽比。针对矢跨比分别为1/4,1/3和1/2,长宽比分别为5/3,2/1和3/1的柔性充气膜结构模型,计算不同内压及不同风向角作用下的结构响应。结果表明,考虑流固耦合作用时,充气膜结构的风压体型系数比不考虑流固耦合作用的刚性模型明显偏大,其影响因子在1.25~1.5之间;充气膜结构的风压系数分布受风向角、内压、长宽比及矢跨比的影响较大。  相似文献   

15.
下击暴流作用于建筑物将产生严重破坏,虽然其引起的风荷载已有较多研究,但均局限于无降雨的干下击暴流作用情况。目前,已有研究表明风雨环境下的建筑风驱雨(wind-driven rain,WDR)可能产生较显著的雨压荷载,因此对有降雨的湿下击暴流作用下建筑立面WDR雨压开展研究十分必要。基于建筑WDR数值模拟方法,引入欧拉多相流模型,采用RNG k-ε湍流模型封闭求解N-S方程,模拟求解湿下击暴流的建筑WDR场,侧重考虑建筑距风暴中心位置及雨强变化的情况,分析迎风面WDR雨压分布特性并与干下击暴流作用下的纯风压进行比较。结果表明:随着建筑远离风暴中心,雨压存在先增大后又减小的现象;迎风面沿竖直中心线上同处的雨压可达纯风压的20%,且迎风面较大风压、雨压均出现在建筑底部位置,因此湿下击暴流风压与雨压联合作用将比较显著,需要考虑其对建筑的影响。  相似文献   

16.
沙岭子电厂冷却塔群风荷载的风洞研究   总被引:7,自引:0,他引:7  
本文通过风洞实验研究了沙岭子电厂接近直线布置的四个双曲线型冷却塔在主导风向和最大风速风向角下的平均压力和脉动压力分布。研究结果表明:在较大风向角时,主要由于塔群间的邻近作用,使塔面最小平均风压系数绝对值有所增加,对塔面的脉动压力分布影响较小;在较小风向角时,主要由于上游塔的尾流影响,使下游塔塔面的平均压力分布变化较大,特别是脉动压力,与孤立塔相比可增大几倍。同时,塔群影响使得下游塔压力谱中能量分布相对集中,其峰值频率较孤立塔有成倍的提高。  相似文献   

17.
风荷载在屋面光伏阵列结构体系设计中起控制作用。采用计算风工程的方法分析讨论了屋面光伏板的风荷载特性。数值算法采用分离涡模拟方法。数值计算结果与现有风洞实验数据的比较,验证了本文方法的正确性。考虑影响光伏板风荷载的因素主要有光伏板在屋面上的安装位置、安装倾角、光伏阵列之间的距离和风向等。计算结果表明,屋面处脱落的涡对安装在不同位置的光伏阵列风荷载的影响较明显。当倾角由15°增加到45°时,电池板受到的风荷载随着倾角的增加而增大。在一定阵列间距范围内,光伏板风荷载主要表现为前排对下游光伏板的遮挡影响。本文方法与结果能为屋面光伏建筑结构设计提供重要参考。  相似文献   

18.
为了获得落地四坡房屋表面积雪分布规律,根据风雪运动机理选取适当的雪粒粒径、积雪密度、沉降速度等条件,考虑积雪侵蚀沉积等影响因素,基于Euler-Euler多相流理论,使用FLUENT软件Mixture多相流模型模拟了立方体周围积雪及高低屋盖模型表面积雪分布,并与实测进行了比较,确定了湍流物理方程、数值风洞尺寸、细部网格及数量、壁面条件等各计算参数设置。以风速、风向角为参数,模拟落地四坡房屋屋面积雪分布得出:随着风速增加,屋面积雪量不断减少,15m/s风速下屋面积雪呈完全侵蚀状态,低风速下屋面积雪更多;屋面各区域积雪漂移随着风向角的改变不断改变,总体表现为侵蚀状态沉积区域较少;在5m/s风速下落地四坡房屋的迎风面各区域积雪分布系数在0.5以下,迎风屋顶各区域积雪分布系数基本为0,背风屋顶各区域积雪分布系数变化幅度高达0.8,背风面各区域积雪分布系数整体保持在0.9附近。得到了5m/s风速下区域积雪分布系数表,可为该类房屋的设计使用提供理论依据。  相似文献   

19.
利用Fluent软件对超大瘦高型冷却塔的风荷载进行了CFD数值模拟,获得冷却塔外表面的三维流场特性和风压系数分布曲线,并与规范数据进行比较,以验证数值模拟的准确性;利用CFD动网格研究风振条件下冷却塔内外壁的风压分布。结果表明:考虑风振特性后,冷却塔外壁风压呈现增大的趋势,最大负压位置即流动分离点在考虑风振时产生了滞后;对于本文研究的上下开口结构而言,在考虑风振作用后内部风压系数的绝对值整体偏大,且内部高压区的位置发生了变化;不考虑风振时内部风压高压区发生在接近塔底的区域,而考虑风振特性后,内部风压高压区发生在接近塔顶的区域。这说明风振在一定程度上改变了冷却塔内部风压的分布。  相似文献   

20.
陈芳达  代钦 《实验力学》2011,26(4):356-368
为认识屋内流动结构和改善房屋自然通风效果,本文介绍了风压作用下大开口的房屋自然通风模型的风洞实验结果.首先通过表面压力分布测量得到了建筑物表面风压系数的分布规律,以此为依据选取合理的窗口位置.而后采用PIV粒子图像测速技术,对房屋模型内自然通风的流场进行定量测量,研究不同窗口大小和窗口位置对室内流场速度分布的影响;通过...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号