首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用基于Reynolds时均方法(RANS方法)模拟下击暴流风场,在与已有试验数据进行对比验证的基础上,模拟分析立面开洞对低层建筑内外风压分布的影响,侧重考虑建筑处于径向最大风速位置(r/D_0=1.0),风向、开洞位置、开洞面数和开洞率的变化对内外风压分布的影响。分析结果表明:与封闭建筑相比,单面开洞建筑屋面内外合风压系数明显增大,在0°风向作用下,7.5%的开洞率引起开洞建筑屋面内外合风压系数的最大增幅,总体平均增幅约为300%;开洞面数的变化对建筑内风压有显著影响,在0°风向作用下,相对于单面开洞建筑,三面开洞建筑各分区内风压系数降低的幅度最大,降幅的最大值约为150%;在侧面开洞时,位置变化对建筑内外表面风压均有较大影响,对比同一分区处各工况间风压变化,最大外风压系数差为0.4左右,出现在侧面靠近迎风转角区域(D1、E1),各分区内风压系数差均约为0.4;风向变化对建筑内压也产生一定影响,可导致其值发生正负改变。当风向为30°时,相较于0°风向,双面开洞建筑侧面靠近背风转角区域(D4)内风压变化最大,内风压系数由-0.2变为0.32。  相似文献   

2.
下击暴流作用于建筑物将产生严重破坏,虽然其引起的风荷载已有较多研究,但均局限于无降雨的干下击暴流作用情况。目前,已有研究表明风雨环境下的建筑风驱雨(wind-driven rain,WDR)可能产生较显著的雨压荷载,因此对有降雨的湿下击暴流作用下建筑立面WDR雨压开展研究十分必要。基于建筑WDR数值模拟方法,引入欧拉多相流模型,采用RNG k-ε湍流模型封闭求解N-S方程,模拟求解湿下击暴流的建筑WDR场,侧重考虑建筑距风暴中心位置及雨强变化的情况,分析迎风面WDR雨压分布特性并与干下击暴流作用下的纯风压进行比较。结果表明:随着建筑远离风暴中心,雨压存在先增大后又减小的现象;迎风面沿竖直中心线上同处的雨压可达纯风压的20%,且迎风面较大风压、雨压均出现在建筑底部位置,因此湿下击暴流风压与雨压联合作用将比较显著,需要考虑其对建筑的影响。  相似文献   

3.
低层房屋风压分布特性的模拟与分析   总被引:4,自引:0,他引:4  
基于Reynolds时均N—S方程和标准κ-ε双方程封闭模型,对一类带挑檐的低层双坡屋面房屋在不同风向角下的表面风压进行了敷值模拟,模拟结果与风洞试验结果作了比较。在此基础上,根据模拟结果对房屋各表面及挑檐处的风压分布特性和规律进行了分析和计算,获得了不同风向角下各表面的风载体型系数,为该类房屋的工程抗风设计提供了依据。  相似文献   

4.
针对布局变化对高层建筑下击暴流场气动干扰特性研究的缺乏,采用RNG k-ε湍流模型封闭求解N-S方程的RANS方法模拟下击暴流场,在与已有单体高层建筑下击暴流场试验数据进行对比验证的基础上,模拟研究两幢高层建筑布局的下击暴流风效应场。考虑建筑布局距风暴中心距离变化以及布局纵横向间距变化时,施扰建筑对受扰建筑立面风压的影响,获取立面风压干扰规律与特性。结果表明:受扰建筑迎风面干扰因子随风暴中心距离的增大而增大,突出表现在较大距离区间(r2D),且干扰作用随布局纵横向间距的变化存在较明显差异;当距风暴中心较近时(r2D),布局纵横方向间距变化对受扰建筑干扰因子的影响较小;在径向最大风速位置处(r/D=1.0),临近施扰建筑的受扰建筑侧风面风压相对单体情况有所减小,其干扰因子随布局纵向间距的增大而减小,随横向间距的增大而增大。  相似文献   

5.
低层四坡屋面房屋风载体型系数的分析与实用计算   总被引:1,自引:0,他引:1  
利用数值模拟和风洞模型试验,获得了低层四坡屋面房屋在不同风向角下的屋面风载体型系数的实用计算公式。首先对缩尺比为1∶20的四坡屋面房屋模型(足尺为平面7.5 m×15 m,檐口高度9.6 m,挑檐长度1.5m)进行了风洞试验,再通过改变体型参数对5种屋面坡角、5种房屋高宽比和长宽比情况的屋面风压进行了数值模拟。通过对数值模拟和试验结果的分析发现,屋面坡角及房屋高宽比是影响屋面风荷载的主要因素。据此提出了屋面各分区风载体型系数的实用计算公式,并给出了计算实例,将计算结果与试验结果作了比较。结果表明,该实用公式简便准确,可直接供四坡屋面房屋抗风设计参考和应用。  相似文献   

6.
采用CFD数值模拟技术,对处于C类地貌风场中由3栋建筑形成的单列建筑群进行静力风荷载和风场的数值模拟.数值模拟采用良好适应性的非结构化四面体单元进行网格划分,侧重模拟分析了各风向角下建筑间距的改变引起面平均风压系数的改变,由此得到了此类群体建筑表面风压系数干扰因子在各风向角下随建筑间距变化的分布规律和特征.  相似文献   

7.
采用CFD数值模拟技术,对处于C类地貌风场中由3栋建筑形成的单列 建筑群进行静力风荷载和风场的数值模拟. 数值模拟采用良好适应性的非结构化四面体单元 进行网格划分,侧重模拟分析了各风向角下建筑间距的改变引起面平均风压系数的改变,由 此得到了此类群体建筑表面风压系数干扰因子在各风向角下随建筑间距变化的分布规律和特 征.  相似文献   

8.
王辉  刘敏  胡正生  郑吉丰  王静峰 《应用力学学报》2020,(1):351-358,I0024,I0025
以苏州太平金融大厦为工程背景,针对其大跨裙摆屋盖的风荷载作用,首先采用RNG k-ε模型模拟分析了其平均风压分布规律,以及风向变化对屋盖表面风荷载体型系数的影响;其次,引入干扰因子IF,探讨了周边建筑对大跨裙摆屋盖风荷载的气动干扰作用。结果表明:0°风向下,走廊上方屋盖两侧区域出现“上吸下顶”的叠加作用;90°风向下屋盖北侧飘带末端区域受到狭道风效应出现正压集中现象;风向变化对大跨裙摆屋盖的风荷载体型系数分布影响较大;且周围建筑物对大跨裙摆屋盖的气动干扰效应明显,主要表现为风压“遮挡效应”,而局部区域表现为风压“放大效应”。  相似文献   

9.
大跨度脊谷式膜屋盖风载分布的实验研究   总被引:1,自引:0,他引:1  
基于台州某风雨操场脊谷式张拉膜屋盖缩尺模型风洞试验的数据结果,选取典型测点,研究了屋面迎风前缘、过渡区及中轴区的平均风压和脉动风压系数的分布特性。同时,鉴于屋盖的不规则曲面造型,表面风压梯度变化较大,采用单一体型系数反映屋面风载已不能满足要求。文中在结合屋盖自身复杂体型和风压分布特征基础上,按各榀各边片将屋面划分为不同区域,对5个不利风向角下的区域体型系数进行统计分析,并给出各区域体型系数建议取值。最后,针对这类体型屋盖特点和风压分布特性,得出一些结论和建议,为进一步研究该类屋盖的风荷载特性和结构抗风设计提供了依据。  相似文献   

10.
基于CFD数值模拟方法,采用RNG k-ε湍流模型对某体育场阶梯型悬挑屋盖风压进行了模拟研究。分析了屋盖风压分布特性及风向对风压的影响;并且考虑周边建筑对风场的扰动影响,引入风压系数干扰因子IF量化分析了周边建筑对体育场屋盖风压分布的气动干扰效应。结果表明:此类阶梯型大跨屋盖主要受风吸力作用,屋盖檐口、角部区域的风压系数量值较大;0°和180°风向角下平均风压随测点位置变化趋势大致相同,风压在台阶转折处发生突变;屋盖各区域的风载体型系数对风向角的敏感程度存在较大差异;周边建筑对屋盖风压主要起遮挡效应,对屋盖某些局部区域的风压起放大效应。  相似文献   

11.
顾志福  杨乐天  李燕 《力学季刊》2007,28(4):599-603
通过风洞模拟实验对双曲面形屋盖的平均风荷载特点进行了研究.文中给出了屋盖的平均风荷载随风向角改变的变化特点和规律,特别讨论产生这些特点的原因及其流动机理.结果表明,在所有风向角下,双曲面屋盖除了在位于下游的边缘的挑檐位置外,都是负压分布.局部负压最大值主要出现在迎风挑檐的边缘部分.虽然屋盖的局部负压峰值随风向角改变,位置和数值变化都很大,然而,作为屋盖整体,平均风压平均值随风向角的变化很小.有关结果为类似建筑项目的风荷载设计和相应规范的制定和修改提供了有用的信息和材料.  相似文献   

12.
基于Fluent软件平台,采用雷诺应力模型(RSM),对一类实际瓦屋面双坡低矮建筑的风荷载特性进行了研究.首先通过对TTU标准模型的计算,验证了本文数值模拟方法的可行性并确定了合适的网格及计算参数.然后以实际瓦屋面双坡低矮建筑作为典型计算模型,对三种不同屋盖的体型系数进行了数值模拟,将实际瓦屋面模型与风洞试验模型进行了对比分析,并分析了不同风向下瓦片屋盖对于屋面风压的影响.结果表明,实际瓦屋面模型的风压值整体上比风洞试验简化模型的风压值要小,两模型的风压差值从0°风向到90°风向呈递减趋势,且迎风面各分块的风压差普遍大于背风面各分块的风压差.结果还表明,在各风向角下,瓦片屋盖对屋面风压的影响程度不一,且折线瓦对风压的影响相比波形瓦要大.  相似文献   

13.
平屋盖风压分布的数值模拟   总被引:2,自引:0,他引:2  
基于Reynolds时均N-S方程和RSM模型对平屋面的风压分布进行了数值模拟,在此基础上系统研究了风向角、跨高比、地面粗糙度、风速等因素对屋面风压分布的影响,探讨了结构周围流场的绕流特性,最后根据屋面的结构形式及风压分布特点将屋面进行分区,给出了屋面在不同风向角下的分区风载体型系数以供工程设计参考。  相似文献   

14.
为了获得落地四坡房屋表面积雪分布规律,根据风雪运动机理选取适当的雪粒粒径、积雪密度、沉降速度等条件,考虑积雪侵蚀沉积等影响因素,基于Euler-Euler多相流理论,使用FLUENT软件Mixture多相流模型模拟了立方体周围积雪及高低屋盖模型表面积雪分布,并与实测进行了比较,确定了湍流物理方程、数值风洞尺寸、细部网格及数量、壁面条件等各计算参数设置。以风速、风向角为参数,模拟落地四坡房屋屋面积雪分布得出:随着风速增加,屋面积雪量不断减少,15m/s风速下屋面积雪呈完全侵蚀状态,低风速下屋面积雪更多;屋面各区域积雪漂移随着风向角的改变不断改变,总体表现为侵蚀状态沉积区域较少;在5m/s风速下落地四坡房屋的迎风面各区域积雪分布系数在0.5以下,迎风屋顶各区域积雪分布系数基本为0,背风屋顶各区域积雪分布系数变化幅度高达0.8,背风面各区域积雪分布系数整体保持在0.9附近。得到了5m/s风速下区域积雪分布系数表,可为该类房屋的设计使用提供理论依据。  相似文献   

15.
在实际结构中球形储煤仓的网壳结构都与输煤栈桥相连,栈桥洞口的存在会使网壳表面风荷载变化更为复杂,我国现行规范中对网壳上开洞口的特殊建筑风压没有明确的设计规定。基于此,运用FLUENT软件和计算流体力学(CFD),采用SST?-?湍流模型,对开洞煤仓球面网壳的风荷载分布规律进行了数值风洞计算。分析了当矢跨比、来流风速、网壳高度、风向角、球面半径、栈桥洞口尺寸改变的情况下网壳表面的风压系数分布规律。分析结果表明,矢跨比、风向角、球面半径对网壳表面风压分布有较大影响。栈桥洞口尺寸对网壳表面局部的风压系数有较大影响,针对此种特殊结构推导出了计算风压系数的拟合公式,并将公式应用到已有的风洞实验结果,发现风压分布变化规律大致相同,拟合情况较好。  相似文献   

16.
考虑流固耦合作用的充气膜结构风压分布研究   总被引:2,自引:2,他引:0  
充气膜结构是典型的风敏感型柔性结构,风荷载经常起关键的控制作用。本文利用ANSYS14.5程序中的workbench平台,考虑流固耦合作用,研究矩形平面气承式充气膜结构的风压系数分布。其中,选用基于雷诺时均模拟法的RNGk-ε湍流模型进行风场模拟,采用弱耦合分析方法模拟流固耦合风荷载效应。分析的参数选择风向角、结构内压、矢跨比和平面长宽比。针对矢跨比分别为1/4,1/3和1/2,长宽比分别为5/3,2/1和3/1的柔性充气膜结构模型,计算不同内压及不同风向角作用下的结构响应。结果表明,考虑流固耦合作用时,充气膜结构的风压体型系数比不考虑流固耦合作用的刚性模型明显偏大,其影响因子在1.25~1.5之间;充气膜结构的风压系数分布受风向角、内压、长宽比及矢跨比的影响较大。  相似文献   

17.
随着建筑高度的增加,结构自振周期延长,抗侧刚度相对变小,风荷载效应增大。本文以200m高的高层建筑为研究对象,基于风洞试验所得的横风向风压时程数据对其结构进行了计算。试验模型缩尺比为1/400。试验取风向角从0°到45°,每级风向角增量为5°,模拟了两种地面粗糙度。对试验数据进行了迎风面和背风面气动效应的分析。考虑结构第一模态振型发生的位移,由振型分解法按Duhamel积分获得了结构顶点位移和顶点加速度,探讨了结构响应最大值和标准差与风向角、结构自振基频、地面粗糙度等因素的关系。研究表明:风荷载效应与风向角有密切的联系,结构最大响应一般发生在0°。  相似文献   

18.
为研究局部开洞的落地四坡房屋表面风压分布,基于流体动力学和大气边界层基本理论,运用FLUENT软件并借助开洞TTU标准模型的现场实测试验数据,分析与探讨了数值风洞尺寸、离散格式、求解算法、网格划分技术等关键参数及技术,建立了开洞落地四坡房屋的数值风洞。在此基础上,以洞口大小、洞口位置及单面、多面开洞为分析变量,进行了59种开洞房屋工况表面风压分布数值模拟,得到了各变量对房屋表面风压分布,提出了整体结构抗风设计的风荷载体型系数。分析结果表明:开洞对落地四坡房屋风压分布影响显著,风压数值变化大,甚至出现正负压交变;迎风面单面开洞时最为不利,屋盖的风压系数峰值高达-1.24,设计及使用时应引起足够的重视。  相似文献   

19.
为研究山地下击暴流的近地风场特征,建立了三维余弦山体模型,通过物理试验研究了不同初始出流风速和径向距离下山地下击暴流的风场特性、风剖面特性和山顶风速加速效应。研究结果表明:在山体迎风侧,气流挤压使得风剖面中最大风速值所在高度更贴近地面,在山体背风侧,由于山顶对气流的抬升作用,风剖面中最大风速值所在高度显著提高;距离风暴中心径向距离和出流风速大小会明显影响山地下击暴流的风速值,对山顶最大风速加速比影响较小;山地下击暴流山顶最大风速加速比在数值上近似等于1.0加上对应的山体坡度值。  相似文献   

20.
针对下击暴流整体移动对其水平风速的增大效应,采用数值模拟方法(CFD)得到全尺寸下击暴流不同径向位置的风剖面,并与线性叠加算法得到的水平移动下击暴流的风剖面进行对比,发现线性叠加方法在R/D≤1.1径向区间内不能准确体现下击暴流整体水平移动对沿其整体移动方向上的纵向风速剖面的影响。为此,本文提出了非线性预测方法,准确地得到了下击暴流不同水平移动速度条件下的不同径向位置风剖面;结合风剖面计算该公式与大气边界层风速分布,研究了地表粗糙度、10m高度参考风速、下击暴流初始出流速度等对下击暴流影响高度的作用。结果表明:整体水平移动下击暴流影响高度的最大值出现在R/D≤1.13范围;地面粗糙度增加明显降低了该影响高度;整体移动速度增大显著增加了下击暴流的影响高度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号