首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
有限长滚子线接触热弹流润滑分析   总被引:6,自引:2,他引:6  
应用多重网格解法 ,求出了有限长滚子线接触热弹流润滑的完全数值解 .结果表明 :在滚子的中部 ,油膜压力、温度和最小膜厚与无限长线接触热弹流润滑的解几乎一致 ;在滚子端部的圆角处 ,油膜压力、温度和最小膜厚与中部均显著不同 ,且最大油膜压力、最大油膜温度和最小油膜厚度均发生在此处 ,端部圆角半径对弹流润滑性能有显著影响 .同时 ,将有限长线接触热解与有限长线接触等温解进行了比较 .  相似文献   

2.
齿轮的非稳态弹流润滑问题由于啮合过程中滑滚比、曲率半径、卷吸速度和载荷变化范围较大,因此数值计算稳定性很差。而考虑热效应的齿轮非稳态弹流润滑问题,数值计算就更困难。本文应用多重网格技术,求得了齿轮牛顿流体润滑情况下,非稳态热弹流润滑问题的完全数值解。  相似文献   

3.
谐波振动下线接触弹流润滑的仿真及分析   总被引:4,自引:0,他引:4  
采用多重网格技术对谐波振动下线接触弹流问题进行了仿真 ,并对不同振动参数下油膜厚度与压力分布的仿真结果进行了分析 .结果表明 :谐波幅值和频率均对弹流膜厚度、形状及压力分布具有重要影响  相似文献   

4.
不可压缩黏性流问题一般采用Navier-Stokes方程来描述,基于加权残值法,推导了问题的无网格伽辽金法(EFGM)离散Navier-Stokes方程,在时间域上采用分步方法计算,速度和压力由相互独立的方程以解耦的形式求解,并采用同阶移动最小二乘近似,在每一时间步中,对压力解和速度解采用了Newton-Raphson迭代法进行修正,最后将所得到的方法应用到剪切驱动空腔流问题中,验证了方法的有效性,且解的精度高、稳定性好。  相似文献   

5.
偏心轮机构时变热弹流润滑问题分析   总被引:1,自引:0,他引:1  
王静  杨沛然 《摩擦学学报》2002,22(6):481-485
采用多重网格技术对偏心轮-挺杆副的热弹流润滑问题进行了数值模拟,给出了该问题的完全数值解,比较了等温解和热解,分析了反向运动对油膜压力和厚度的影响,并采用"温度-粘度楔"机理进行解释,着重阐述了在零卷吸速度条件下的压力、膜厚、温度和流速分布.数值模拟计算结果表明,在偏心轮-挺杆工作的一个周期内,热效应的影响不可忽略;零卷吸速度时,接触区温升很高,接近两固体表面的流体呈现出不流动状态,此状态归因于特定的温度和卷吸速度条件.  相似文献   

6.
以二维方腔顶盖驱动流为模型,将多重网格方法和SIMPLER算法进行耦合,对不同雷诺数下多重网格加速SIMPLER算法和SIMPLER算法的计算效率进行了对比,数值计算表明:多重网格加速SIMPLER算法不仅能够解决SIMPLER算法不能准确模拟较高雷诺数流场的问题,而且其计算效率远远高于SIMPLER算法.本文也对松弛因子的选取、多重网格实现形式以及网格层数对多重网格加速SIMPLER算法的影响进行了研究,从而为多重网格加速SIMPLER算法的实施提供了计算技术.  相似文献   

7.
基于Weiss-Smith预处理矩阵和全局截断预处理参数,采用有限体积方法对雷诺平均Navier-Stokes方程进行离散。对流项离散采用二阶线性重构和AUSM +-up格式,时间推进方法采用多重网格下的LU-SGS方法。结合M PI消息传递方法,建立了一套计算低速流动的并行数值方法。计算了低速椭球体的流场和气动力,压力系数和切应力系数计算结果与文献实验结果对比吻合度较好。生成了末敏弹的流场计算网格,对绕末敏弹流场进行了数值模拟。对多重网格下多进程的加速比和并行效率进行了测试,显示了程序良好的并行效率。计算的气动力结果与实验结果吻合。综合结果表明:本文的数值方法能够用于低速弹箭流场和气动力计算,为新型弹箭的设计和定型提供保证。  相似文献   

8.
采用混合网格求解紊流Navier Stokes方程。在物面附近采用柱状网格 ,其他区域则采用完全非结构网格。方程的求解采用Jamson的有限体积法 ,紊流模型采用两层Baldwin Lomax代数紊流模型。用各向异性多重网格法来加速解的收敛。数值算例表明 ,用混合网格及各向异性多重网格求解紊流流动是非常有效的  相似文献   

9.
非牛顿体通用模型线接触弹流润滑的数值分析   总被引:3,自引:3,他引:0  
基于润滑剂在弹流润滑状态下表现为非牛顿体特性,根据弹流润滑理论,采用一种新的非牛顿体流变模型,建立了适用于非牛顿体的修正Reynolds方程,进行了等温弹流润滑的数值计算,并在等温解的基础地温度场分析。数值分析结果表明,由于滑滚比和模型参数对剪应力影响较大,因而在滑滚比和模型参数较大时应进行热弹流计算。通过温度场分析可证明:非牛顿体通过模型可用于等温弹流润滑和热弹流润滑计算。  相似文献   

10.
运用改进的数值方法求得了与实验结果相符的等温有限长直母线滚子的弹流数值解,与无限长线接触弹流结果相比较,揭示了润滑状态下滚子摩擦副的边缘效应和端泄对油膜分布的影响,在低速和重载时滚子的两端都几乎不能形成全膜润滑,因而有必要通过修形消除滚子端部的边缘效应.  相似文献   

11.
A Newton multigrid method is developed for one-dimensional (1D) and two-dimensional (2D) steady-state shallow water equations (SWEs) with topography and dry areas. The nonlinear system arising from the well-balanced finite volume discretization of the steady-state SWEs is solved by the Newton method as the outer iteration and a geometric multigrid method with the block symmetric Gauss-Seidel smoother as the inner iteration. The proposed Newton multigrid method makes use of the local residual to regularize the Jacobian matrix of the Newton iteration, and can handle the steady-state problem with wet/dry transition. Several numerical experiments are conducted to demonstrate the efficiency, robustness, and well-balanced property of the proposed method. The relation between the convergence behavior of the Newton multigrid method and the distribution of the eigenvalues of the iteration matrix is detailedly discussed.  相似文献   

12.
本文给出了基于高精度非常应变子区位移模式数字相关方法的Newton-Raphson迭代法求解的新通用公式,对相关迭代算法中的初值估计问题进行了研究,提出两种初值估计方法:(1)利用“实时相减”和“精密调节”相结合的方法而获得零初值;(2)快速迭代初值估计方法,从而有效地解决了Newton-Raphson迭代算法中的初值估计问题,并提高了迭代的收敛速度。  相似文献   

13.
The finite element method is employed to investigate time-dependent liquid metal flows with free convection, free surfaces and Marangoni effects. The liquid circulates in a two-dimensional shallow trough with differentially heated vertical walls. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature and free surface position. The time integration is performed with the backward Euler and trapezoid rule methods with step size control. The Galerkin method is used to reduce the problem to a set of non-linear equations which are solved with the Newton–Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0·015 and Grashof number are in the transition range between laminar and turbulent flow. The results reveal the effects of flow intensity, surface tension gradients, mesh refinement and time integration strategy.  相似文献   

14.
A novel extension of the basis reduction method for kinematic hardening shakedown problem is presented. Firstly, the basis reduction method is implemented based on the modified Newton–Raphson (N-R) method. Then a new technique for the construction of back stress field is introduced, where the simultaneous influence of multiple load corners in shakedown is taken into consideration. Finally, two typical numerical examples are investigated. The results compared with previous works in literatures demonstrated that the proposed method is accurate and the performance in reducing of computation time is significant.  相似文献   

15.
In this paper, an approach to improve the application of the differential quadrature method for the solution of Navier–Stokes equations is presented. In using the conventional differential quadrature method for solving Navier–Stokes equations, difficulties such as boundary conditions' implementation, generation of an ill conditioned set of linear equations, large memory storage requirement to store data, and matrix coefficients, are usually encountered. Also, the solution of the generated set of equations takes a long running time and needs high computational efforts. An approach based on the point pressure–velocity iteration method, which is a variant of the Newton–Raphson relaxation technique, is presented to overcome these problems without losing accuracy. To verify its performance, four cases of two‐dimensional flows in single and staggered double lid‐driven cavity and flows past backward facing step and square cylinder, which have been often solved by researchers as benchmark solution, are simulated for different Reynolds numbers. The results are compared with existing solutions in the open literature. Very good agreement with low computational efforts of the approach is shown. It has been concluded that the method can be applied easily and is very time efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
点、线接触真实粗糙表面的弹流润滑研究   总被引:6,自引:1,他引:6  
黄平  温诗铸 《力学学报》1993,25(3):302-308
本文给出了点、线接触的真实粗糙表面的微弹流数值解。在给定随机粗糙表面样本后,求解大小不同的载荷和粗糙的弹流问题。从计算结果可以看出,由于Reynolds方程中速度项的作用,在表面对应粗糙的位置处引起了压力变化,从而因其产生的弹性变形使粗糙变得平滑。对此光滑表面解可以看出,因粗糙引起的压力和膜厚的变化在光滑解附近波动。载荷较大时,压力分节接近固体接触情况。  相似文献   

17.
A semi-analytic approach is proposed to analyze steady state responses of dynamic systems containing fractional derivatives. A major purpose is to efficiently combine the harmonic balancing (HB) technique and Yuan–Agrawal (YA) memory-free principle. As steady solutions being expressed by truncated Fourier series, a simple yet efficient way is suggested based on the YA principle to explicitly separate the Caputo fractional derivative as periodic and decaying non-periodic parts. Neglecting the decaying terms and applying HB procedures result into a set of algebraic equations in the Fourier coefficients. The linear algebraic equations are solved exactly for linear systems, and the non-linear ones are solved by Newton–Raphson plus arc-length continuation algorithm for non-linear problems. Both periodic and triple-periodic solutions obtained by the presented method are in excellent agreement with those by either predictor–corrector (PC) or YA method. Importantly, the presented method is capable of detecting both stable and unstable periodic solutions, whereas time-stepping integration techniques such as YA and PC can only track stable ones. Together with the Floquet theory, therefore, the presented method allows us to address the bifurcations in detail of the steady responses of fractional Duffing oscillator. Symmetry breakings and cyclic-fold bifurcations are found and discussed for both periodic and triple-periodic solutions.  相似文献   

18.
Benchmark problems are solved with the steady incompressible Navier–Stokes equations discretized with a finite volume method in general curvilinear co-ordinates on a staggered grid. The problems solved are skewed driven cavity problems, recently proposed as non-orthogonal grid benchmark problems. The system of discretized equations is solved efficiently with a non-linear multigrid algorithm, in which a robust line smoother is implemented. Furthermore, another benchmark problem is introduced and solved in which a 90° change in grid line direction occurs.  相似文献   

19.
In this article, post-buckling and non-linear bending analysis of functionally graded annular sector plates based on three dimensional theory of elasticity in conjunction with non-linear Green strain tensor is considered. In-plane normal compressive loads have been applied to either radial, circumferential, or all edges of annular sector plates. Material properties are graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents while Poisson׳s ratio is assumed to be constant. The governing equations are developed based on the principle of minimum total potential energy and solved based on graded finite element method. Non-linear equilibrium equations are solved based on iterative Newton–Raphson method. The effects of material gradient exponent, different sector angles, thickness ratio, loading condition and two different boundary conditions on the post-buckling behavior of FGM annular sector plates have been investigated. Results denote that due to the stretching–bending coupling effects of the FGMs, the post-buckling behavior of movable simply supported FGM plates is not of the bifurcation-type buckling. Moreover, FGM annular sector plates subjected to uniaxial compression at radial edges show a non-linear bending behavior with unique and stable equilibrium paths following a flattening feature.  相似文献   

20.
The equations governing immiscible, incompressible, two-phase, porous media flow are discretized by generalized streamline diffusion Petrov–Galerkin methods in space and by implicit differences in time. Systems of non-linear algebraic equations are solved by Newton–Raphson iteration employing ILU-preconditioned conjugate-gradient-like methods to the non-symmetric matrix system in each iteration. The resulting solution methods are robust, enable complex grids with irregular nodal orderings and allow capillary effects. Several numerical formulations are tested and compared for one-, two- and three-dimensional flow cases, with emphasis on problems involving saturation shocks, heterogeneous media and curved boundaries. For reservoirs consisting of multiple rock types with differing capillary pressure properties, it is shown that traditional Bubnov-Galerkin methods give poor results and the new Petrov–Galerkin formulations are required. Investigations regarding the behaviour of several preconditioned conjugate-gradient-like methods in these type of problems are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号