首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
利用INSTRON-1185型万能材料试验机在准静态加载环境下对不同密度的聚氨酯泡沫的抗压、抗拉及抗弯性能进行了较系统的实验研究,分析了聚氨酯泡沫材料的力学性能及吸能特性随表观密度的变化规律.研究表明,聚氨醋泡沫材料的杭压性能优于其杭拉性能,该材料具有良好的吸能特性,且其吸能特性随密度的增大而提高.  相似文献   

2.
飞机坠撞过程中结构的变形模式和吸能对乘员保护具有重要意义,而连接结构的载荷传递和失效形式是影响飞机结构变形的重要因素之一。为了获取航空高锁螺栓连接件在坠撞载荷下的动态响应和失效机理,基于抗剪型平头高锁螺栓设计了2种材料(2024-T3和7050-T7451)的单钉单搭接连接件,利用高速液压伺服材料试验机进行4种速度(0.01、0.10、1.00和3.00 m/s)下的拉伸测试,得到连接件的动态响应、极限载荷、能量吸收和失效模式随速度的变化规律,并分析了连接件的失效机理。结果表明,连接件的失效模式受母材和高锁螺栓/螺母材料强度影响较大,而受加载速度影响较小;当速度从0.01 m/s增加到3.00 m/s时,2024-T3连接件的极限载荷和能量吸收分别增加了2.17%和34.43%,7050-T7451连接件的极限载荷和能量吸收分别增加了5.53%和6.58%。  相似文献   

3.
弹体高速侵彻混凝土质量侵蚀实验研究   总被引:1,自引:0,他引:1  
为研究弹体高速侵彻混凝土过程中质量侵蚀规律及特性,开展了一系列实验研究,进行了不同速度(800~1500m/s)侵彻不同强度(C30~C80)混凝土试验,根据试验结果拟合出了既定材料弹体质量侵蚀同侵彻速度之间的对应关系。试验结果还表明:(1)对于该种材料弹体,当侵彻速度小于1200m/s时,弹体侵蚀量不仅同Vs2(动能)呈线性关系,也随混凝土强度的提高而增加;(2)对于材料为60Si2Mn的弹体,其理想侵彻速度为1100m/s~1200m/s之间;高于该速度,质量侵蚀严重,弹体侵彻能力急剧下降;(3)弹体质量侵蚀主要发生在头部,当侵彻速度较低时,磨损是导致弹体质量损失的主要因素;当侵彻速度逐步提高,超过某临界值时,熔融和磨损是导致弹体质量损失主导因素。  相似文献   

4.
为研究开剖面复合材料薄壁吸能结构的吸能特性,基于高速液压伺服试验系统,开展了开剖面复合材料薄壁结构轴向压缩试验,分析了截面构型、截面长宽比、触发模式及加载速度对其吸能特性的影响,揭示了其在压溃过程中的失效及吸能机理。研究结果表明,复合材料薄壁结构压溃过程中主要通过材料弯曲、分层、剪切破坏以及压溃区之间的摩擦吸能。截面构型对其吸能特性影响显著,其中,帽形及Ω形试件的平均压溃载荷较C形试件分别高出14.1%和14.6%,比吸能较C形试件分别高出14.3%和14.8%;截面长宽比对复合材料薄壁结构吸能特性的影响不如截面构型明显;触发模式主要影响吸能结构的初始压溃阶段,在降低峰值载荷方面,C形试件采用45°倒角触发效果更好,帽形试件采用15°尖顶触发效果更好;当加载速度从0.01 m/s提高到1 m/s时,C形、帽形及Ω形试件的平均压溃载荷分别下降了6.1%、10.9%和6.1%,比吸能分别下降了6.2%、11.0%和6.2%。  相似文献   

5.
采用三维Voronoi技术和显式有限元方法来研究闭孔和开孔两种泡沫金属的动态塑性泊松比问题和微惯性效应。细观数值模拟的结果表明:塑性泊松比随着轴向应变的增加而下降,塑性泊松比的峰值随着冲击速度的增加而下降;相对密度增加时,泡沫金属塑性泊松比增加;微惯性对平台应力的影响不大。该数值模拟结果能够解释侧向约束情况下闭孔泡沫金属的压溃应力随着加载速率的提高而下降的实验现象。  相似文献   

6.
用SHPB装置对三种密度的发泡聚苯乙烯(Expanded Polystyrene,EPS)材料进行了从300/s至1400/s共五个中高应变率下的冲击压缩实验。实验中采用波分离技术有效延长应力-应变曲线的测量范围,并简要介绍了其原理和具体实施办法。所有应变率下均获得了含有弹性段、平台屈服段和压实段完整三阶段的应力-应变曲线。曲线的重复性较好,应变率基本恒定。实验结果表明,相同密度EPS泡沫应力-应变曲线的屈服平台段长度随应变率的增加而增加,且趋于平缓。在相近应变率下,随EPS泡沫的密度增加,屈服应力增加,而变形及吸能能力减弱。  相似文献   

7.
应用有限元方法分析了基于十四面体模型的三维闭孔泡沫材料的动态力学性能。计算中所有十四面体具有相同的尺寸,主要研究了不同初始冲击速度、不同相对密度以及组成泡沫的机体材料的应变强化对泡沫材料的变形模态、平台力及密实化应变能的影响,尽可能全面地描述了泡沫材料的能量吸收特性。数值结果表明:冲击速度对泡沫模型的模态影响较大,特别受到高速冲击时,冲击端泡沫形成I形然后向支撑端传播;相对密度对能量吸收能力的贡献较大,密实化应变能随相对密度呈二次曲线变化;冲击速度、相对密度及机体材料的应变强化分别与坪应力呈线性关系。  相似文献   

8.
泡沫金属在高速冲击下表现为变形局部化,采用传统的分离式Hopkinson杆技术进行动态实验测试可能存在问题。本文以动态、刚性-塑性硬化(D-R-PH)模型为理论基础,对闭孔泡沫铝开展Taylor-Hopkinson冲击实验,结合高速摄影技术和数字图像相关技术(DIC),获得了冲击速度的历史曲线。通过运用冲击波理论,提出了冲击速度与冲击时间的隐函数拟合方法,确定了动态初始压溃应力和应变硬化参数等两个动态材料参数。利用冲击端的应力历史曲线检验了结果的有效性,分析了动态材料参数对相对密度的敏感性,发现动态初始压溃应力和应变硬化参数均与相对密度近似呈幂函数关系。实验表明泡沫铝的应力-应变行为呈现明显的冲击速率敏感性。  相似文献   

9.
胡俊  韦璐 《应用力学学报》2015,(3):430-434,7
试验研究了四种不同密度的聚苯乙烯EPS泡沫材料单轴压缩下的应力-应变关系。在Gibson模型和Rusch模型基础上建立了EPS泡沫单轴压缩下应力-应变关系模型,并对建立的模型中各参数分别进行了定义;通过对能量吸收图、吸能效率图、理想吸能效率图的分析表明:在0.687MPa<σ≤1.038MPa范围内,密度为55kg/m3的EPS泡沫吸收的能量最大,当σ>1.038MPa时,吸收的能量随密度的增加而增加;四种密度的泡沫(28kg/m3、40kg/m3、55kg/m3、70kg/m3)在吸能能力最佳时的应力分别为0.396MPa、0.565MPa、0.866MPa、1.222MPa;密度为55kg/m3的EPS泡沫最接近于理想吸能材料。  相似文献   

10.
泡沫金属在冲击载荷下的动态压缩行为   总被引:1,自引:0,他引:1  
基于微CT扫描影像信息,建立泡沫金属材料二维细观有限元模型,考虑不规则胞孔的不均匀分布,根据实验结果拟合孔壁材料的弹塑性本构参数。研究了泡沫金属在不同加载速度下的压缩变形机理,重点讨论泡沫金属中弹塑性波的传播、惯性效应和从冲击端传递到静止端的应力变化特征。对于相对密度为0.3的泡沫铝,弹性波速约为5 km/s,与孔壁材料的弹性波速相当,塑性波速表现为随着加载速度的增大而增大。在加载速度为50~100 m/s间变形模式从准静态模式转变为动态模式,未发现明显的临界速度,动态锁死应变随着加载速度的增大而增大。由于塑性波发生反射,试件会发生二次压缩过程,相应地,静止端产生二次应力平台。受惯性作用的影响,二次应力平台也随着加载速度的增大而提高。  相似文献   

11.
通过有限元方法研究碳纤维复合材料箱体挤压性能,以动力电池系统碳纤维复合材料箱体挤压工况为例,基于LS-DYNA仿真有限元应用,重点阐述了碳纤维复合材料有限元仿真材料及夹芯面板铺层设置方法,分析了不同铺层角度对电池包挤压性能的影响。从最大挤压力、平均挤压力水平、能量吸收、比吸能考察碳纤维复合材料箱体电池包挤压性能指标发现,[0°,60°,0°,60°,0°,60°]铺层综合指标占优。有限元仿真技术在碳纤维复合材料上的应用可以有效地指导动力电池碳纤维复合材料箱体性能开发。  相似文献   

12.
以泡沫铝夹芯圆管为研究对象,采用数值模拟研究了横向冲击载荷作用下4种不同约束夹芯圆管的动态响应。研究了夹芯圆管的几何参数、冲击速度和芯层泡沫铝相对密度对夹芯圆管力学行为的影响,对比分析了不同约束条件对泡沫铝夹芯圆管变形模式和吸能性能的影响。结果表明:随着内管直径的减小、冲击速度的增大和芯层泡沫铝相对密度的增大,泡沫铝夹芯圆管的比吸能增大;内管壁厚的增加使无约束和倾斜约束下夹芯圆管的比吸能增大,对侧壁约束和组合约束下夹芯圆管的吸能影响不明显;采用一定的外部约束条件是提高泡沫铝夹芯圆管吸能性能的一种可行的方法。  相似文献   

13.
The in-plane dynamic crushing of two dimensional honeycombs with both regular hexagonal and irregular arrangements was investigated using detailed finite element models. The energy absorption of honeycombs made of a linear elastic-perfectly plastic material with constant and functionally graded density were estimated up to large crushing strains. Our numerical simulations showed three distinct crushing modes for honeycombs with a constant relative density: quasi-static, transition and dynamic. Moreover, irregular cellular structures showed to have energy absorption similar to their counterpart regular honeycombs of same relative density and mass. To study the dynamic crushing of functionally graded cellular structures, a density gradient in the direction of crushing was introduced in the computational models by a gradual change of the cell wall thickness. Decreasing the relative density in the direction of crushing was shown to enhance the energy absorption of honeycombs at early stages of crushing. The study provides new insight into the behavior of engineered and biological cellular materials, and could be used to develop novel energy absorbent structures.  相似文献   

14.
The two-part series of papers presents the results of a study of the crushing behavior of open-cell Al foams under impact. In Part I, direct and stationary impact tests are performed on cylindrical foam specimens at impacts speeds in the range of 20–160 m/s using a gas gun. The stress at one end is recorded using a pressure bar, while the deformation of the entire foam specimen is monitored with high-speed photography. Specimens impacted at velocities of 60 m/s and above developed nearly planar shocks that propagated at well-defined velocities crushing the specimen. The shock speed vs. impact speed, and the strain behind the shock vs. impact speed representations of the Hugoniot were both extracted directly from the high-speed images. The former follows a linear relationship and the latter asymptotically approaches a strain of about 90% at higher velocities. The Hugoniot enables calculation of all problem variables without resorting to an assumed constitutive model. The compaction energy dissipation across the shock is shown to increase with impact velocity and to be significantly greater than the corresponding quasi-static value. Specimens impacted at velocities lower than 40 m/s exhibited response and deformation patterns that are very similar to those observed under quasi-static crushing. Apparently, in this impact speed regime inertia increases the energy absorption capacity very modestly.  相似文献   

15.
超高分子量聚乙烯(UHMWPE)轴承材料在低速重载工况下常发生严重磨损,通过添加改性填料能够显著提升其摩擦学性能. 凹凸棒土(ATP)作为一种改性填料能够增强基体材料的机械性能进而改善其摩擦特性,但是ATP作为填料往往会因为团聚效应而降低材料的补强效果. 通过对ATP进行表面改性处理可克服团聚效应,实现ATP与基体间的均匀共混. 通过表面化学包覆改性法制备由硅烷偶联剂KH570改性处理的ATP与UHMWPE共混制成复合材料,并与纯UHMWPE材料作对照试验. 利用RTEC摩擦试验机研究复合材料在水润滑条件下摩擦系数随载荷和转速的变化,以及材料填充含量对复合材料在低速重载(v=0.55 m/s、Fz=55 N)工况下磨损性能的影响. 利用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)与电子万能材料试验机分别对ATP改性效果、熔融结晶行为及复合材料的重要力学性能进行表征测试. 试验结束后,利用表面轮廓仪与激光共聚焦显微镜观察复合材料表面形貌并分析其磨损机理. 结果表明:硅烷偶联剂KH570对ATP的改性效果良好,填充改性ATP能提高材料的邵氏硬度,且材料的拉伸性能随填充含量的提高呈下降趋势;对比纯UHMWP材料,复合材料的摩擦系数更低,适量的ATP填充能改善材料磨损性能,减小体积磨损率;试验中改性ATP质量分数为1%的复合材料其摩擦学性能最优,在低速重载时的摩擦系数及体积磨损率与纯UHMWPE相比分别降低了52.45%和37.58%.   相似文献   

16.
In a porous material, both the pressure drop across a bubble and its speed are nonlinear functions of the fluid velocity. Nonlinear dynamics of bubbles in turn affect the macroscopic hydraulic conductivity, and thus the fluid velocity. We treat a porous medium as a network of tubes and combine critical path analysis with pore-scale results to predict the effects of bubble dynamics on the macroscopic hydraulic conductivity and bubble density. Critical path analysis uses percolation theory to find the dominant (approximately) one-dimensional flow paths. We find that in steady state, along percolating pathways, bubble density decreases with increasing fluid velocity, and bubble density is thus smallest in the smallest (critical) tubes. We find that the hydraulic conductivity increases monotonically with increasing capillary number up to Ca 10–2, but may decrease for larger capillary numbers due to the relative decrease of bubble density in the critical pores. We also identify processes that can provide a positive feedback between bubble density and fluid flow along the critical paths. The feedback amplifies statistical fluctuations in the density of bubbles, producing fluctuations in the hydraulic conductivity.  相似文献   

17.
多孔材料是一种优异的吸能缓冲材料,但由于其变形模式的非单一性以及动态应力应变曲线的难获取性,其吸能行为对相对密度和冲击速度的依赖性关系还并不完全明朗。本文基于不需要提前作本构假定的波传播法,开展了多孔材料的吸能行为研究。采用多孔材料的细观有限元模型进行Taylor冲击虚拟实验,获取全场质点速度时程曲线,结合Lagrange分析法得到多孔材料的局部应力应变信息,进而探讨了动态吸能性能对材料相对密度和冲击速度的依赖性。研究结果表明多孔材料的吸能行为可依据变形模式分为三个阶段。在冲击模式下,多孔材料单位体积吸能与相对密度成线性增加关系,此时惯性起主导作用;在过渡模式下,惯性的主导作用减弱,单位体积吸能量的增加速率随相对密度的增加而减弱;在准静态模式下,多孔材料只能发生微小的变形,其吸能很少。本文进一步获得了区别于多孔材料准静态应力-应变曲线的动态应力-应变状态曲线,并考察了其与相对密度之间的关系。结果表明:随着相对密度的增加,多孔材料的动态压实应变将变小,而动态塑性平台应力将提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号