首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
The gelation kinetics of aqueous solutions of acrylamideacrylic acid copolymers in the presence of chromium ions was studied with different rheometers. The gel time is found to vary with the principle of the apparatus because of a low shear dependence of the elongation of the macromolecules. The variations of the gel time with the experimental conditions of the gel preparation were investigated and we conclude that the gelation is governed by the oligornerization kinetics of the chromium ions which are instantaneously, complexated by the carboxylate groups of the polymer. The variation laws of the gel time and of the elastic modulus with chromium and polymer concentrations, temperature and ionic strength are in qualitative agreement with the structure of the temporary network of the semi-dilute solutions of these copolymers.  相似文献   

2.
Physical gelation is the process of crosslinking which reversibly transforms a solution of polymers into a gel. The crosslinks of the network have a physical origin (hydrogen bonding, Van der Waals forces... ) and therefore are sensitive to variations of temperature, pH, ionic content, etc. (non-permanent crosslinks). Physical and chemical gelation have been extensively studied in quiescent conditions, where rheology experiments have been performed to follow the network formation without disturbing the process. In this study we consider gelation of a well known physical, thermoreversible, gel (gelatin gel), which proceeds under flowing conditions. The gelling solution is submitted to a shearing, with imposed, permanent shear stresses or imposed, permanent, shear rates. Under flow, a competition arises between the formation of clusters by physical crosslinking and their disruption by the shear forces. This investigation defines the flowing conditions which either allow or impede gel formation. In particular, a critical shear rate , related to the gelation temperature and gelatin concentration, is identified which separates the two regimes. A microscopic model is proposed, based on the analysis of flow curves and dynamic measurements, which describes the structure of the gelling solution: microgel particles grow to a maximum size which depends on the flow. When the volume fraction of particles is high enough, percolation between particles occurs suddenly and a yield stress fluid is formed (particulate gel). The differences between gels made in quiescent conditions and gels made under flow are underlined.  相似文献   

3.
The surface tension of aqueous polymer solutions of polyacrylamide (PAM), polyacrylic acid (PAA), carboxymethyl cellulose (CMC), and hydroxyethyl cellulose (HEC) was studied over a range of polymer concentrations by using the maximum bubble pressure method at temperatures ranging from 20 to 65°C. The surface tension of water was also measured by the maximum bubble pressure method as well as by the DuNoüy ring method over the same temperature range. The experimental water data are in excellent agreement with the well-established tabulated data in the literature.

For a fixed concentration, all of the polymer solutions exhibited a decrease in surface tension with increasing temperature level. When compared with water at a fixed temperature level, the PAM and CMC solutions showed slightly higher surface tension values, whereas the PAA solutions yielded values equal to those found for water. In the case of the HEC solutions, the measured surface tensions decreased with concentration at a fixed temperature level and were lower than the values found for water. For a concentration of 2000 wppm the surface tension values for the hydroxyethyl cellulose were of the order of 10% lower than those for water at a fixed temperature level.

A comparison of the new measurements with the relatively limited previously published studies showed good agreement.  相似文献   


4.
Gelation of crosslinking polymers, with ionic groups, is of interest in membrane processing of these materials. The gelation of polyvinyl alcohol in the presence of an ionic crosslinker, sulfosuccinic acid, was monitored through rheological measurements. The evolution of rheological material functions during film formation, which involves solvent evaporation and crosslinking, was observed at different polymer and crosslinker concentrations. Relative effect of water evaporation leading to physical gelation and the chemical crosslinking was examined. To understand the effect of crosslinker type, the rheology of nonionic crosslinker, glutaraldehyde was also examined. The gel points as well as network parameters for these covalent networking systems were different and depended on crosslinker type and polymer/crosslinker concentrations. However, qualitative evolution of rheological behavior during film formation was largely similar, demonstrating the dominating effect of solvent evaporation. Crosslinking in the absence of solvent evaporation was examined at different temperatures. It can be concluded that similar mechanism was involved, independent of temperature, in the temperature range of interest. The effect of crosslinker concentration on evolution of rheological properties near gelation was insignificant for ionic crosslinker though marginally significant for nonionic crosslinker.  相似文献   

5.
In the present work the effects produced by the presence of two different surfactants (Abil B 8842 and Triton N 101) on the rheological properties of aqueous welan matrices are studied, both in steady and in oscillatory shear conditions. Welan is an acidic microbial polysaccharide having high thermal, pH, and salt stability. At sufficiently low concentrations it forms aqueous weak gel matrices which can be profitably used to regulate the rheological properties of disperse systems and improve their stability. Different systems are examined, having the same polysaccharide concentration (0.25 wt%) and different surfactant concentrations (up to 40 wt%, far beyond the range of practical interest for emulsion preparation). All the systems exhibit marked shear-thinning properties which can be described quite satisfactorily by the Cross equation. The concentration dependence of the zero-shear-rate viscosity as well as the mechanical spectra confirm that, in the concentration range considered, the aqueous welan systems are typically weakly structured fluids. The influence of both surfactants is examined in detail by comparing the behavior of the different classes of systems. Both surfactants reduce the polymer contribution at low shear, whereas an opposite action is exerted at high concentration and shear. These contrasting effects are ascribed to the different structural features of the polymer matrix under low stresses and high shear conditions, respectively. Received: 6 February 2000 Accepted: 1 November 2000  相似文献   

6.
Stress relaxation and creep of polymer gels in solvent under various deformation modes such as uniaxial, strip-biaxial, and equibiaxial were theoretically investigated. The magnitudes of relaxed stress and the creep at equilibrium under each deformation mode were derived by a thermodynamic consideration of gel system. Combining a constitutive equation of gel with the equation of motion of polymer network, the stress and strain under each deformation mode have been formulated. The theory proposed here was applied to the rectangular gels under various deformations to calculate the stress relaxation and creep behavior of polymer networks in solvent. Two methods different in treatment of swelling under the constant strain or stress were employed for the calculation: one is based on the assumption that the swelling proceeds isotropically, and the other considers the anisotropic swelling process. The results obtained by the two methods mainly differ in the diffusion mode determining the swelling behavior. The possibility of undershoot of relative strain in load-free direction in the creep is also expected.  相似文献   

7.
The steady-shear viscosity, dynamic viscoelasticity, and sedimentation behavior were measured for silica suspensions dispersed in aqueous solutions of poly(ethylene oxide) (PEO). For suspensions prepared with polymer solutions in which the transient network is developed by entanglements, the viscosity at a given shear rate decreases, shows a minimum, and then increases with increasing particle concentration. Because the suspensions are sterically stabilized under the conditions where the particle surfaces are fully covered with by a thick layer of adsorbed polymer, the viscosity decrease can be attributed to the reduction of network density in solution. But under the low coverage conditions, the particles are flocculated by bridging and this leads to a viscosity increase with shear-thinning profiles. The polymer chains with high molecular weights form flexible bridges between particles. The stress-dependent curve of storage modulus measured by a stress amplitude sweep shows an increase prior to a drastic drop due to structural breakdown. The increase in elastic responses may arise from the restoring forces of extended bridges with high deformability. The effect of PEO on the rheological behavior of silica suspensions can be explained by a combination of concentration reduction of polymer in solution and flocculation by bridging.  相似文献   

8.
9.
Chitosan-g-poly(N-isopropylacrylamide) (chitosan-g-PNIPAM) was synthesized and characterized rheologically in aqueous solutions. The copolymer solution exhibits a thermoassociative behavior in which its elastic response dramatically increases when temperature is above the critical temperature or the association temperature, T assoc. The copolymer at low concentration shows typical solution property. When the temperature is increased up to the critical temperature, the copolymer exhibits a gel-like characteristic due to the formation of physical cross-links between chitosan backbones through the self-aggregation of PNIPAM side chains. At high concentration, the system exhibits a weak elastic response due to the entanglement of the copolymer at 25°C. As temperature is raised above T assoc, the system shows a strong elastic behavior due to the formation of additional physical cross-links via the aggregation of PNIPAM side chains. Chitosan-g-PNIPAM offers an attractive associating behavior in aqueous solution at temperature close to the body temperature, thus providing potential applications in pharmaceutical and medical industries.  相似文献   

10.
Effects of polymer addition on the rheology of o/w microemulsions   总被引:1,自引:0,他引:1  
Microemulsions are profitably employed in the pharmaceutical field to prepare drug delivery systems release for guest drugs sparingly soluble in water. In particular, they can be used for topical and transdermal administration in place of ointments or creams, on condition that their rheological properties are properly modulated. The present work concerns the analysis of the rheological effects produced by the addition of different amounts of Carbopol 940, a polymer widely used for topical applications, to an O/W microemulsion containing a lipophilic phase (Labrafac Hydro, 21 wt%) and stabilized by the surfactant (Cremophor RH40)/co-surfactant (Transcutol) couple. The contribution of the disperse phase is evaluated by comparing the linear and nonlinear properties of the Carbopol/microemulsion system (CM) with those of the corresponding aqueous Carbopol systems with co-surfactant (CWT) and without co-surfactant (CW). Four polymer concentrations (0.25%, 0.5%, 1%, and 2%) are taken into consideration. The linear viscoelastic properties of the microemulsions essentially mirror those of the corresponding aqueous Carbopol systems when the polymer concentration is sufficiently high (1–2%). In these conditions the oil phase is reasonably hosted within the meshes of the three-dimensional polymeric gel network and gives only a slight contribution to the connectivity of the whole system. Similar considerations can be drawn from the flow behavior of the systems examined in the low shear region. Received: 6 February 2000 Accepted: 13 November 2000  相似文献   

11.
A constitutive model is developed for the viscoplastic behavior of a semicrystalline polymer at finite strains. A solid polymer is treated as an equivalent heterogeneous network of chains bridged by permanent junctions (physical cross-links, entanglements and lamellar blocks). The network is thought of as an ensemble of meso-regions linked with each other. In the sub-yield region of deformations, junctions between chains in meso-domains slide with respect to their reference positions (which reflects sliding of nodes in the amorphous phase and fine slip of lamellar blocks). Above the yield point, this sliding process is accompanied by displacements of meso-domains in the ensemble with respect to each other (which reflects coarse slip and disintegration of lamellar blocks). To account for the orientation of lamellar blocks in the direction of maximal stresses and formation of micro-fibrils in the post-yield region of deformations (which is observed as strain-hardening of specimens) elastic moduli are assumed to depend on the principal invariants of the right Cauchy–Green tensor for the viscoplastic flow. Stress–strain relations for a semicrystalline polymer are derived by using the laws of thermodynamics. The constitutive equations are determined by six adjustable parameters that are found by matching observations in uniaxial tensile tests on injection-molded isotactic polypropylene at elongations up to 80%. Prior to testing, the specimens were annealed at various temperatures ranging from 110 to 163 °C. Fair agreement is demonstrated between the experimental data and the results of numerical simulation. The effect of annealing temperature on the material parameters is studied in detail.  相似文献   

12.
In this paper, the influence of NaCl addition, up to very large concentrations, on the rheological properties of cetyltrimethylammonium p-toluenesulfonate (CTAT) solutions and their mixtures with two hydrophobically modified polyacrylamides (HMPAM) has been studied under simple shear. The CTAT concentrations employed were above the critical rod concentration. As salt is added to CTAT aqueous solutions, the zero-shear viscosity first increases, goes through a maximum, and at very high ionic strengths increases once more. The overlap concentration of worm-like micelles decreases as the concentration of NaCl increases. The results are explained by the salt addition-induced growth of worm-like micelles and salting out effects at the highest contents of NaCl. The influence of ionic environment on the rheological properties of CTAT with two HMPAM solutions with different contents of hydrophobic moieties was also studied under simple shear. When NaCl is added to HMPAM/CTAT solutions, the same trends observed in CTAT/NaCl solutions were repeated but the viscosity increases were largely magnified. The large viscosity enhancements with salt increments in HMPAM/CTAT solutions were explained by the formation of an interpenetrated network of hydrophobically modified polymer chains and worm-like micelles with hydrophobic sequences embedded within its structure.  相似文献   

13.
Dependences of wavy texture on polymer concentration and solution temperature were examined using aqueous solutions of hydroxypropylcellulose (HPC). The phase of aqueous solution of HPC varied from an isotropic (I) system to a liquid crystalline (LC) one through a biphasic (I+LC, LC+I) system with increasing the HPC concentration and/or decreasing the solution temperature. The wavy texture emerged not only in the LC system but also in the LC+I system. Furthermore, induction time of wavy texture was evaluated in terms of apparent shear strain. It is suggested that polydomain structures included in liquid crystalline systems and droplets of isotropic phase in biphasic systems affect the initial stage of emergence of wavy texture at low shear rates.  相似文献   

14.
The rheological behavior of cellulose nanocrystal (CNC) and modified CNC (mCNC) suspensions in dimethyl sulfoxide (DMSO) was investigated. The efficiency of the surface modification of CNCs by grafting an organic acid chloride to produce hydrophobic CNCs has been verified by X-ray photoelectron spectroscopy (XPS). The thermal degradation temperature of the mCNCs was found to be 165 versus 275 °C for CNCs. The CNC suspensions in DMSO at 70 °C underwent gelation at very low concentration (1 wt%) after 1 day. The network formation was temperature sensitive and did not occur at room temperature. For gels containing 3 wt% CNCs, the complex viscosity at 70 °C increased by almost four decades after 1 day. For the mCNCs in DMSO, a weak gel was formed from the first day and temperature did not affect the gelation. Finally, the effect of adding 10 wt% of polylactide (PLA) to the solvent on the rheological properties of CNC and mCNC suspensions was investigated. The properties of suspensions containing 1.9 wt% CNCs and mCNCs increased during the first and second days, and PLA did not prevent gel formation. However, the reduced viscosity and storage modulus of the CNC and mCNC gels with PLA were lower than those of samples without PLA.  相似文献   

15.
To form an electrorheological network (ERN), semiconducting nanoparticles were embedded in a polymer that was cross-linked to restrict particle motion. The microstructure ranged from random to aligned, depending on the degree of field-induced particle alignment during chemical network formation. We investigated in detail the softness effects of the matrix, having a relatively low storage modulus, on the dynamic rheological behavior of the ERN and analyzed its anisotropy. The anisotropy of the microstructure was probed rheologically with the modes of small-amplitude oscillatory shear (loading perpendicular to the field direction) and compression (loading in the field direction). The storage shear modulus was found to be a function of the applied electric field, particle volume fraction, and the pre-alignment electric field strength during the cross-linking reaction of the matrix, which governs the thickness of particle columns and intercolumn distance. Nonlinear behavior at small strain (below 0.1%) was conspicuous; this nonlinear viscoelasticity was accompanied by only a limited deformation of ordered connectivity. Throughout this study, we fabricated the ERN with the highly controllable modulus-switching effect acting in a shear-mode operation. Managing this anisotropy of an ERN by the electrical and chemical process is important in the design of smart materials that will provide improved stability and mechanical strength compared with fluid-type electrorheological materials and faster response time compared with that of conventional charged polymer gel.  相似文献   

16.
Conclusion Measurement of the viscosities of polystyrene and cyclolinear polyphenylsiloxane depending on their concentrations has revealed critical concentrations of these polymers to exist corresponding to the formation of a fluctuating continuous supermolecular network in the solutions. It has been shown on the example of polystyrene solutions that changing from a good to a poor solvent has little effect on the value of the critical concentration. Calculation of the critical concentration with the use of the parameters employed in the free volume theory after the Pezzin method shows good agreement with the critical concentrations determined from the shape of the viscosity vs. concentration dependences of polystyrene solutions.A method is described for producing polymer aerogels by sublimation of the frozen solvent from polymer solutions. It is shown that to obtain aerogels with very high specific surface areas from crystallized solutions is necessary to fulfil at least two conditions: 1. to freeze them quickly; 2. to sublimate the solvent in vacuo at a sufficiently low temperature. Special attention is drawn to the fact that the effectivity of sublimation drying should be estimated by the specific surface area of the preparations obtained as a result of drying.Mesurement of the specific surface areas of aerogels obtained under appropriate conditions from polymer solutions of different concentrations shows that with a poor solvent the aerogels have specific surface areas one decimal order lower. Hence it is concluded that solutions of polymers in poor solvents should yield stronger and less permeable polymeric systems. In all the cases studied the dependence of the specific surface area of the aerogel on the concentration of the polymer in the solution has a distinct maximum which corresponds to the critical concentration determined viscometrically. This is evidence of the correspondence between the structure of the aerogels and the structure of the initial solutions, at least, at concentrations in the region of their critical and above-critical values. Sublimation of the solvent from frozen polymer solutions results in contraction of the samples, which is the most considerable at polymer concentrations below critical. This is also connected with the relatively low specific surface areas of aerogels obtained from solutions of low concentrations.  相似文献   

17.
Serving as an elastic model system for food gels, characteristics of polyacrylamide (PAAm) gels were investigated using small amplitude and large deformation rheological tests. The PAAm gels displayed elastic or viscoelastic behavior depending on network crosslink density. For elastic PAAm gels, the rheological properties obeyed the theory of rubber elasticity; whereas for viscoelastic PAAm gels, shear modulus depended on temperature. The elastic PAAm gel fracture parameters did not change with deformation rate (0.2–5.5 s–1), indicating insignificant viscous flow during deformation. Fracture stress was correlated with gel monomer concentration, whereas the fracture strain remained constant regardless of the monomer concentration. In addition, the stress was linearly proportioned with strain up to fracture, indicating that PAAm gels did not experience finite network chain extensibility during large deformation. Consequently, the fracture of PAAm gels did not result from the extensional limitation of network chains, nor did gel fracture result from the nonlinear force–distance relationship between polymer connections. Purportedly, the fracture of PAAm gels was caused by external force overcoming the gel cohesive forces, and low strength of PAAm gels compared to rubbers caused fracture prior to experiencing nonlinear stress-strain deformation.Paper No. FSR04-20 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643. The use of trade names does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticisms of similar ones not mentioned.  相似文献   

18.
Photomechanics of light-activated polymers   总被引:1,自引:0,他引:1  
Light-activated polymers are an exciting class of modern materials that respond mechanically when irradiated by light at particular wavelengths. While details of the mechanisms that connect the optical excitation to mechanical behavior are complex and differ from material to material, there is sufficient commonality among them to permit the development of a generalized modeling framework to describe the photomechanics. The features shared by light-activated polymers involve light interacting with the material, which triggers photochemical reactions that alter the structure of the crosslinked polymer network. Many such structural alterations result in an evolution of the polymer network, and subsequent macroscopic deformation. When this process is appropriately executed it can enable a photomechanical shape-memory effect. In this paper, we develop a three-dimensional finite-deformation modeling framework to describe the photomechanical response of light-activated polymer systems. This framework integrates four coupled phenomena that contribute to macroscopic photomechanical behavior: photophysics, photochemistry, chemomechanical coupling, and mechanical deformation. The chemomechanical coupling consists of chemically induced structural alterations of the crosslinked network that result in subsequent deformation. We describe this behavior through a decomposition of the crosslinked network into two components consisting of an original network and a photochemically altered network; both evolve during photomechanical deformation. The modeling framework presented in this paper is sufficiently general that it is applicable to light-activated polymer systems that operate with various mechanisms in each of the four areas. Using this modeling approach, we develop constitutive models for two recently developed light-activated polymer systems [Lendlein, A., Hongyan, J., Junger, O., Langer, R., 2005. Light-induced shape-memory polymers. Nature 434 (7035) 879; Scott, T.F., Schneider, A.D., Cook, W.D., Bowman, C.N., 2005. Photoinduced plasticity in crosslinked polymers. Science 308 (5728) 1615]. For the material developed by Scott and his co-workers we validate our model by measuring and numerically simulating photo-induced stress relaxation and bending deformation and obtain good agreement between measurements and predictions. Finally, we use the model to study the effects of photomechanical parameters (applied strain magnitude, irradiation time and intensity, and photoabsorber concentration) and the behavior of the network evolution rule on the material response.  相似文献   

19.
E. Bourret 《Rheologica Acta》1992,31(4):368-373
Résumé Les seuils de plasticité de gels d'agar a différentes concentrations ont été déterminés par différentes méthodes et comparé entre eux. Le seuil de contrainte qui apparaît au cours du refroidissement de la solution indique le début de la formation du réseau gélifié. II définit une température d'apparition du seuil de plasticite. La determination de cette temp6rature critique montre que la formation du gel est soumis aux conditions de refroidissement de la solution: le processus de gelification est accéléré par un refroidissement rapide des solutions et débute à une température plus basse. La formation du gel peut être suivie dans des conditions plus proches des réalités industrielles de fabrication de ces milieux.
The yield stress of agar gels has been measured by different methods and the results compared. The yield stress which occurs during cooling of polymer solutions indicates the beginning of crystalline network formation. This point defines the temperature of plastic flow; its determination shows that the gel formation is subordinated to cooling conditions of the solution: the process of gelification is retarded by very fast cooling, and is induced at a lower temperature than occurs with slow cooling. We follow the formation of gels in conditions similar to those used in manufacturing processes.
  相似文献   

20.
新型Ni-Fe-W-S合金刷镀层耐磨性的研究   总被引:3,自引:0,他引:3  
镀铬是用于提高材料常温耐磨性的有效方法。但是,铬镀层在摩擦温升的作用下,其硬度和耐磨性却都下降,而且镀铬还会污染环境和对人体造成损害.为了克服铬镀层和镀铬工艺的这些缺点,研究了一种新型的Ni-Fe-W-S合金刷镀层,摩擦磨损试验结果表明,在于摩擦时于高速(71m/min)和重载(80N)条件下,这种合金刷镀层的耐磨性能明显地比铬镀层的好,磨痕形貌的扫描电子显微镜观察发现,前者发生的是应变疲劳磨损,而后者已经发生了严重的粘着磨损.同时,通过对高速重载干摩擦条件下平均温度和闪温的计算,并且利用X射线衍射仪和透射电子显微镜等对磨损前后镀层的相结构及显微组织的分析,探讨了Ni-Fe-W-S合金刷镀层在如此苛刻条件下具有较高硬度和良好耐磨性能的机理,指出这是在摩擦热的作用下合金刷镀层中部分非晶向晶态转化前发生微观结构畸变并形成了更多硬质相的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号