首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of the mean velocity and turbulence intensity are presented for a rectangular jet of water ejecting into a gaseous ambient. Data are reported for streamwise locations up to 30 nozzle widths from the discharge and spanwise locations covering the inner 80% of the jet width. The flow conditions at the nozzle discharge were controlled by using different nozzle designs (parallel-plate and converging) and flow manipulators (wire grid and screens). The results track the mean velocity and turbulence intensity profiles with streamwise distance, highlighting changes in both the profile shapes and magnitudes for both measured quantities. Independent of nozzle configuration, the mean velocity profile was shown to be most nonuniform and the turbulence intensity most nonhomogeneous at the nozzle discharge. With increasing streamwise distance, the mean velocity profile underwent a gradual transition to a completely uniform condition, while the turbulence field decayed and became homogeneous. The rate of viscous dissipation was shown to depend strongly on the nozzle exit condition. This work was supported by the National Science Foundation under grant numbers CTS-8912831 and CTS-9307232  相似文献   

2.
Extensive single point turbulence measurements made in the boundary layer on a mildly curved heated convex wall show that the turbulence heat fluxes and Stanton number are more sensitive to a change in wall curvature than the Reynolds stresses and skinfriction coefficient, and that downstream, as the flow adjusts to new curved conditions, the St/c f ratio of Reynolds analogy is appreciably lower than in plane wall flow for the same conditions. Details of the turbulence structure in unheated flow have been documented in an earlier paper; temperature field measurements now described comprise mean temperature distributions, the streamwise variation of wall heat flux, profiles of the temperature variance, transverse and streamwise heat fluxes, and triple correlations. Turbulent diffusion of heat flux is drastically reduced even by mild curvature; changes in the heat fluxes are of the same order as changes in the shear stress, that is, an order of magnitude greater than the ratio of boundary layer thickness to wall radius of curvature. The data include plane flow measurements taken in a developed boundary layer upstream of a change in wall curvature.  相似文献   

3.
 Velocity statistics along the stagnation line of an axi-symmetric wall stagnating turbulent flow are studied experimentally. A low turbulence, uniform air flow from a nozzle type air supply with an exit diameter of 50 mm stagnates at a wall located 50 mm downstream. A flow velocity is set to 3 m/s, 10 mm downstream from the exit of the air supply. Instantaneous values of streamwise and radial velocities are measured by laser-Doppler velocimetry. The turbulence level in the air flow is changed by use of turbulence generator. When the turbulence generator is not installed in the air supply, the mean velocity profile in the streamwise direction fits well with that of a laminar viscous flow with the rms value of velocity fluctuations low near the wall. With the turbulence generator installed, a significant turbulence structure appears near the wall. When the wall is approached, the rms value of velocity fluctuations in the streamwise direction decreases monotonically while the profile of the rms value in the radial direction reaches a maximum near the wall. The increase in the rms value of velocity fluctuations in the radial direction near the wall is attributed to the bi-modal histogram of the fluctuating velocity in the radial direction. Near the wall, the instantaneous stagnation streamline fluctuates and the probability of the mean location of the stagnation point reaches a maximum not at the stagnation line but on a circle around the stagnation line, resulting in the bi-modal histogram. Turbulence statistics, the rms value of velocity fluctuation and the turbulent kinetic energy, can be normalized successfully by similarity parameters based on the strain rate and the reference turbulent kinetic energy introduced by Champion and Libby. Received: 7 April 1995/Accepted: 27 September 1996  相似文献   

4.
One of the many applications of curved wall jets of engineering importance is the Coanda Flare, which is used for burning waste gases in the petroleum industry and which gave rise to this work. The gas jet flows over an axisymmetric tulip shaped body, entraining ambient air and so promoting clean combustion. The object of this work was to calculate the development of the jet with the extra rates of strain imposed by both longitudinal curvature and divergence. A differential ‘partially-parabolic’ technique was used with uncoupling of the streamwise and cross-stream momentum equations, leading to an efficient computer program. The extra rates of strain were modelled by corrections to a mixing length model with the two effects being assumed to be additive. The calculation method was compared with seven test ccases of experimental data. The first five were from published literature, and included the plane wall jet and axisymmetric free jet, and the separate effects of longitudinal curvature and divergence. The lost two cases were measurements of the wall jet flow over a model Coanda Flare. The calculation method gave generally good results for the main features of the flow such as growth rate and velocity decay. Details of the flow were not so well predicted, particularly the turbulent shear stress, as a result of the relatively simple turbulence model employed. The calculation method should provide a useful engineering tool, but some profitable developments could be made, particularly in the area of turbulence modelling.  相似文献   

5.
This paper investigates the layered structure of a turbulent plane wall jet at a distance from the nozzle exit. Based on the force balances in the mean momentum equation, the turbulent plane wall jet is divided into three regions: a boundary layer-like region (BLR) adjacent to the wall, a half free jet-like region (HJR) away from the wall, and a plug flow-like region (PFR) in between. In the PFR, the mean streamwise velocity is essentially the maximum velocity, and the simplified mean continuity and mean momentum equations result in a linear variation of the mean wall-normal velocity and Reynolds shear stress. In the HJR, as in a turbulent free jet, a proper scale for the mean wall-normal flow is the mean wall-normal velocity far from the wall and a proper scale for the Reynolds shear stress is the product of the maximum mean streamwise velocity and the velocity scale for the mean wall-normal flow. The BLR region can be divided into four sub-layers, similar to those in a canonical pressure-driven turbulent channel flow or shear-driven turbulent boundary layer flow. Building on the log-law for the mean streamwise velocity in the BLR, a new skin friction law is proposed for a turbulent wall jet. The new prediction agrees well with the correlation of Bradshaw and Gee (1960) over moderate Reynolds numbers, but gives larger skin frictions at higher Reynolds numbers.  相似文献   

6.
In the present paper, LDA was used to measure the velocity field of turbulent round air jet flows. Two cases were investigated; a jet issuing vertically upward and freely in the laboratory surrounding environment, and a jet issuing vertically upward but out of wall section setting flush horizontally at the nozzle exit. Data were collected for three exit Reynolds numbers of 1.32 × 104, 2.64 × 104 and 3.96 × 104, which correspond to exit velocities of 10 m/s, 20 m/s and 30 m/s respectively. For each Reynolds number, profile measurements of the mean velocity, turbulence intensity, skewness and flatness factors were made at 8 downstream stations up to 30 nozzle-exit diameter. The relative influence of using a wall at the jet exit plane on the jet behavior and characteristics is the objective of the present study. The experimental results indicate that the wall, placed at the exit plane, limits the interaction of the jet flow with the surroundings, and consequently results in a reduction in the velocity spread rate, kinematic momentum flux, and kinematic mass flux. Further, the flatness and skewness factors distributions across the jet flow registered relatively higher values in the outer region of the jet when the wall was used. This indicates a more intermittent behavior of the jet flow in that region due to the existence of the wall.  相似文献   

7.
刘明侯  T.L.Chan 《力学学报》2005,37(2):135-140
实验研究了狭缝射流撞击圆柱表面后壁面射流区的平均流动和湍流特 性. 考察了雷诺数 Re (6000-20000), 喷口到受撞表面距 离 Y/W (5-13), 喷口宽度 W (6.25mm, 9.38mm), 受撞表 面曲率(半圆柱体直径 D = 150mm)对流动和湍流结构的影响. 通过分析 X 热线 在壁面射流区的测量结果发现,在近壁区域,表面曲率、 Re_{w} , Y/W 和 S/W 等 参数对 \sqrt {\overline{u^2}} / U_m 的影响比对 \sqrt {\overline{v^2}} / U_m 强,并且切 应力 \overline {uv} /U_m^2 对表面曲率变化最敏感. 当喷口与受撞击表面之间的距 离 Y/W 在一定范围内增加时, 沿圆柱表面流动的流向和横向的湍流强度增强. 用平板射流和圆柱体表面壁面射流的数据进行比较,从而得到表面曲率对壁面射流特 性的影响. 结果表明,曲率对壁面射流的影响较强, 并随着 S/W 的增大而增强. 随着雷诺数的增大,壁面曲率的影响也有强化的趋势.  相似文献   

8.
The results of measurements of all three components of the mean velocity vector, the Reynolds normal and primary shear stresses and the mean static pressure in a turbulent free jet, issuing from a sharp-edged cruciform orifice, are presented in this paper. The measurements were made with an x-array hot-wire probe and a pitot-static tube in the near flow field of the jet. The Reynolds number, based upon the equivalent diameter of the orifice, was 1.70 × 105. In addition to the quantities measured directly, the mean streamwise centreline velocity decay, the jet half-velocity widths, the jet spreading rate, the mean streamwise vorticity, the mass entrainment rate, the integral momentum flux and the one-dimensional energy spectra have been derived from the measured data. The results show that the mean streamwise centreline velocity decay rate of the cruciform jet is higher than that of a round jet issuing from an orifice with the same exit area as that of the cruciform orifice. The mean streamwise velocity field changed shape continuously from a cruciform close to the orifice exit plane to circular at 12 and half equivalent diameters downstream. The mean streamwise vorticity field, up to about three equivalent diameters downstream of the orifice exit plane, consists of four pairs of counter-rotating cells, which are aligned with the four edges in the centre of the cruciform orifice.  相似文献   

9.
We show that a rather simple, steady modification of the streamwise velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarizes. Two different devices, a stationary obstacle (inset) and a device which injects fluid through an annular gap close to the wall, are used to control the flow. Both devices modify the streamwise velocity profile such that the flow in the center of the pipe is decelerated and the flow in the near wall region is accelerated. We present measurements with stereoscopic particle image velocimetry to investigate and capture the development of the relaminarizing flow downstream these devices and the specific circumstances responsible for relaminarization. We find total relaminarization up to Reynolds numbers of 6000, where the skin friction in the far downstream distance is reduced by a factor of 3.4 due to relaminarization. In a smooth straight pipe the flow remains completely laminar downstream of the control. Furthermore, we show that transient (temporary) relaminarization in a spatially confined region right downstream the devices occurs also at much higher Reynolds numbers, accompanied by a significant local skin friction drag reduction. The underlying physical mechanism of relaminarization is attributed to a weakening of the near-wall turbulence production cycle.  相似文献   

10.
The initial stage of the development of a wall jet under the influence of strong external turbulence has been studied in a novel shear-flow mixing-box experiment. A fully developed channel flow of depth h (40 mm) enters along the top wall of a cuboidal box of height 11 h in which a combination of oscillatory and turbulent velocity fluctuations are generated by a vertical oscillating grid at the midplane 5 h below the wall. When the ratio of the rms grid-generated velocity fluctuations, , to the local mean velocity inside the wall jet layer, u, is greater than about 0.1, significant changes are observed in the mean shear profile and in the eddy structure of the wall jet. The wall jet thickness increases by approximately 25% but the maximum velocity decreases by less than 10% compared to the case without the external turbulence. Fluctuations of the streamwise velocity component increase as expected in the outer part of the wall jet, but the most significant result is the increase by 70% of the fluctuations in the boundary layer close to the wall. CFD simulations using the k-ɛ RNG of the FLUENT CFD Code do not properly model the effect of the large scale external turbulence in this experiment. However, an artificial method, which introduces a series of small inlet/outlet jets to represent external turbulence, approximately simulates the overall effects of the oscillating grid on the wall jet, but does not simulate the amplification of the near wall turbulence. F. T. M. Nieuwstadt: Rest in peace (1946–2005).  相似文献   

11.
An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. The ultrasonic forcing system was constructed by adhering six ultrasonic transducers to a flat plate over which water was flowed. In this system, the ultrasonic waves projected into the water by the transducers caused cavitation, giving rise to an enormous number of tiny water-vapor bubbles. Stereoscopic particle image velocimetry (SPIV) was used to probe the flow characteristics. The SPIV results showed that imposition of the ultrasonic forcing caused a substantial increase in the mean wall-normal velocity but a decrease in the mean streamwise velocity. The ultrasonic forcing reduced the skin friction coefficient by up to 60% immediately downstream of the transducers; this effect gradually dissipated with moving downstream. The streamwise turbulence intensity was reduced near the wall but increased away from the wall, whereas the wall-normal turbulence intensity was not much affected near the wall but increased away from the wall. The Reynolds shear stress and the production of turbulent kinetic energy were reduced near the wall. Imposition of the ultrasonic forcing shifted the streamwise vortical structures away from the wall, leading to a reduction in skin friction.  相似文献   

12.
Two- and three-dimensional spatial direct numerical simulations of a compressible plane jet exhausting into a parallel stream are described. These simulations reveal the inadequacy of a two-dimensional model in capturing the totality of the flow physics. In two dimensions, instabilities evolve into highly organized large-scale mixing events; two-dimensional time-averaged turbulence quantities also suffer from artificial vortex organization. Mean normal velocity profiles show a significant reduction in entrainment with increased compressibility, while the effect is much less pronounced in three dimensions. While streamwise and spanwise turbulence intensities exhibit no change with increased compressibility, normal intensity and shear stress are significantly reduced.  相似文献   

13.
The distribution and motion of inertial particles in plane turbulent wall jet are investigated using direct numerical simulation, under the assumption of one-way coupling. To our knowledge, this appears to be the first direct numerical simulation of a particle-laden plane turbulent wall jet. It is shown that, in outer part of the wall jet, the behaviour of particles closely resembles that of a free plane jet. Due to the streamwise decay of particle Stokes number, the particle streaks formed in the near wall region of the wall jet are characterized by their intensity variation, which differs significantly from those in the channel flow. The streamwise growth of the particle velocity half-width is approximately equal to that of the fluid velocity half-width and the maximum velocity of particles decays slower than that of fluid due to inertia. The outer scaling can collapse the mean particle velocity in both the inner and outer region for heavier particles. In the buffer region, the particle–fluid velocity difference can be negative or positive depending on the Stokes number since there are two competing effects, namely the memory effect and turbophoresis. In the viscous region, the larger particles are on average faster than fluid and the velocity difference is found to be self-similar depending on outer Stokes number. The near-wall distribution of velocity difference is significantly correlated with the presence of high-momentum particles which are entrained by vortical structures generated in the outer region of the wall jet. These results are useful for environmental and engineering applications.  相似文献   

14.
 A laminar wall jet undergoing transition is investigated using the particle image velocimetry (PIV) technique. The plane wall jet is issued from a rectangular channel, with the jet-exit velocity profile being parabolic. The Reynolds number, based on the exit mean velocity and the channel width, is 1450. To aid the understanding of the global flow features, laser-sheet/smoke flow visualizations are performed along streamwise, spanwise, and cross-stream directions. Surface pressure measurements are made to correlate the instantaneous vorticity distribution with the surface pressure fluctuations. The instantaneous velocity and vorticity field measurements provide the basis for understanding the formation of the inner-region vortex and the subsequent interactions between the outer-region (free-shear-layer region) and inner-region (boundary-layer region) vortical structures. Results show that under the influence of the free-shear-layer vortex, the local boundary layer becomes detached from the surface and inviscidly unstable, and a vortex is formed in the inner region. Once this vortex has formed, the free-shear-layer vortex and the inner-region vortex form a vortex couple and convect downstream. The mutual interactions between these inner- and outer-region vortical structures dominate the transition process. Farther downstream, the emergence of the three-dimensional structure in the free shear layer initiates complete breakdown of the flow. Received: 8 November 1995/Accepted: 6 November 1996  相似文献   

15.
The application of an impinging sweeping jet, which oscillates periodically with a large angle, to convective heat transfer has received attention owing to its capability to provide a more spatially uniform and enhanced heat removal rate when compared to a steady jet. Herein, we study how the surface curvature affects the heat transfer performance of a sweeping jet and couple it with the representative flow characteristics. Heat transfer measurement and quantitative flow visualization are conducted experimentally for concave and convex surfaces as well as a flat surface. Whereas concave surfaces have a better heat transfer rate than a flat surface, the enhancement of the heat transfer is relatively small for a convex surface. For both concave and convex surfaces, the Nusselt number does not increase monotonically with the curvature magnitude but has a peak for a moderate curvature. The variation in heat transfer performance with the surface curvature is correlated with the phase-averaged velocity profile of the wall jet deflected after an impingement and the turbulence kinetic energy inside the jet. For both concave and convex surfaces, the wall jet becomes thinner than a flat surface in general, which contributes to improved heat transfer. However, whereas the turbulence kinetic energy is significantly larger for a concave surface of a moderate curvature than that of a flat surface, the turbulence kinetic energy for a convex surface is reduced from that of a flat surface, resulting in degradation of the heat transfer performance.  相似文献   

16.
An experimental investigation of the turbulence structure of a heated plane air jet discharged at various angles into quiescent surroundings is described. Hot-wire anemometry was used to obtain the profiles of mean and turbulent velocities and temperature normal and tangential to the curved path of the flow. Measurements in the buoyancy induced curved region of the jet show the relative influence of the stability induced by both buoyancy and jet curvature on the turbulence structure.  相似文献   

17.
The near field mean flow and turbulence characteristics of a turbulent jet of air issuing from a sharp-edged isosceles triangular orifice into still air surroundings have been examined experimentally using hot-wire anemometry and a pitot-static tube. For comparison, some measurements were made in an equilateral triangular free jet and in a round free air jet, both of which also issued from sharp-edged orifices. The Reynolds number, based on the orifice equivalent diameter, was 1.84×105 in each jet. The three components of the mean velocity vector, the Reynolds normal and primary shear stresses, the one-dimensional energy spectra of the streamwise fluctuating velocity signals and the mean static pressure were measured. The mean streamwise vorticity, the half-velocity widths, the turbulence kinetic energy and the local shear in the mean streamwise velocity were obtained from the measured data. It was found that near field mixing in the equilateral triangular jet is faster than in the isosceles triangular and round jets. The mean streamwise vorticity field was found to be dominated by counter-rotating pairs of vortices, which influenced mixing and entrainment in the isosceles triangular jet. The one-dimensional energy spectra results indicated the presence of coherent structures in the near field of all three jets and that the equilateral triangular jet was more energetic than the isosceles triangular and round jets.  相似文献   

18.
Turbulent structure during transition to self-similarity in a round jet   总被引:1,自引:0,他引:1  
 The developing turbulent region of a round jet was investigated using an improved implementation of digital particle image velocimetry (DPIV). The two-dimensional flow field in planes normal and parallel to the axial velocity was measured at locations between 15 and 30 diameters downstream, for two Reynolds numbers of 5500 and 16,000. The study consisted of instantaneous snapshots of the velocity and vorticity fields as well as measurements of velocity correlations up to third order. In this regime, the Reynolds number had a significant effect on both the instantaneous flow structure and the profiles of mean velocity across the jet. Coherent streamwise structures were present in the jet core for the lower Reynolds number. Additional structures whose evolution was governed by time scales two orders of magnitude larger than the convective scale inside the jet were observed in the entrainment field. The velocity correlations provided further support for the validity of DPIV turbulence measurements. The data was consistent with the equations of motion and momentum was conserved. DPIV measurements of turbulent kinetic energy components agreed with the hot-wire measurements of previous studies. Received: 27 November 1996/Accepted: 14 July 1997  相似文献   

19.
Mean flow and turbulence measurements have been made in a boundary layer which grows first on a flat' wall and then on a convex wall of radius of curvature approximately 100 times the boundary layer thickness. The turbulence data include profiles of the four non-zero components of the Reynolds stress tensor and three triple velocity products obtained at five stream-wise positions. A number of measurements were also made for comparison in the boundary layer on a flat wall under the same conditions. The effects of convex curvature are to reduce turbulent intensities, shear stress and wall friction by approximately 10% of their plane flow values; the triple velocity products are halved in the curved layer. The measurements supplement the small quantity of previously published data available for testing mathematical models of turbulence. The results show the same general trends that have been observed in earlier investigations but there are significant differences in detail, notably in respect of levels of the normal stresses.  相似文献   

20.
刘宁 《力学学报》2011,43(1):24-31
本文用大涡模拟预测了以不同转速做展向旋转的槽道湍流流动,统计平均的流向速度型在壁面附近与已有实验数据符合很好,在通道中部的预测差异也能给出合理解释,对比不同转速的计算结果,表明展向旋转通道的湍流应力和壁面摩擦力在压力面附近提高、在吸力面附近降低,这些高阶湍流统计量的变化规律可以结合湍流应力输运方程加以解释,漩涡识别技术显示了近壁条带结构,其形态和猝发率受旋转附加力的影响发生改变,进而影响壁面摩擦速度的数值和分布,进一步考察垂直流动方向的截面内速度分布,发现旋转引起了垂直壁面方向的流动,形成正负相间排列的流向涡对,并随着转速的增加向压力面靠近。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号