首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
船用气水分离器惯性级流场分析及阻力特性研究   总被引:4,自引:0,他引:4  
采用二阶全展开ETG有限元与大涡模拟(LES)相结合的算法,对120-20-35-3型船用气水分离器惯性级在不同雷诺数条下的流动进行了模拟,通过其中一组雷诺数条件下计算所得该实验件阻力系数与物理实验所得阻力系数相比较,确定出该雷诺数条件下采用大涡模拟时所需的亚格子应力模型常数,将该常数带入其它各组雷诺数条件下的计算中,并将计算结果与相同条件下的物理实验结果相比较,证实了该常数的通用性。该常数一经确定,对各雷诺数条件下的流场进行分析,结果反映出采用二阶全展开ETG有限元与大涡模拟(LES)相结合的算法可以捕捉到非常丰富的涡系及涡动的时变过程。在流场分析的基础上本文计算了该实验件内的能耗场,计算结果表明实验件内的能耗主要集中在大涡丰富的区段内。  相似文献   

2.
水庆象  王大国 《力学学报》2014,46(3):369-381
提出了一种求解非定常不可压缩纳维-斯托克斯方程(N-S方程)的新型有限元法:基于投影法的特征线算子分裂有限元法.在每一个时间层上将N-S方程分裂成扩散项、对流项、压力修正项.对流项采用多步显式格式,且在每一个对流子时间步内采用更加精确的显式特征线-伽辽金法进行时间离散,空间离散采用标准伽辽金法.应用此算法对平面泊肃叶流、方腔流和圆柱绕流进行数值模拟,所得结果与基准解符合良好.尤其对于Re=10000的方腔流,给出了方腔中分离涡发展和运动的计算结果,并发现在该雷诺数下存在周期解,表明该算法能较好地模拟流体流动中的小尺度物理量以及流场中分离涡的运动.   相似文献   

3.
提出了一种求解非定常不可压缩纳维-斯托克斯方程(N-S方程)的新型有限元法:基于投影法的特征线算子分裂有限元法.在每一个时间层上将N-S方程分裂成扩散项、对流项、压力修正项.对流项采用多步显式格式,且在每一个对流子时间步内采用更加精确的显式特征线-伽辽金法进行时间离散,空间离散采用标准伽辽金法.应用此算法对平面泊肃叶流、方腔流和圆柱绕流进行数值模拟,所得结果与基准解符合良好.尤其对于Re=10000的方腔流,给出了方腔中分离涡发展和运动的计算结果,并发现在该雷诺数下存在周期解,表明该算法能较好地模拟流体流动中的小尺度物理量以及流场中分离涡的运动.  相似文献   

4.
非牛顿流体在渐变管中压力和剪切应力的二次摄动解   总被引:1,自引:0,他引:1  
本文利用双摄动方法求解缓慢变化管道中Johnson-Segalman(J-S)流体流动的渐近解.将管道的扩张(或收缩)角度和粘弹性参数分别作为双摄动的参数,由流函数和涡量函数的形式,推导出压力和壁面剪切应力的渐近解.在此基础上,分析了管道角度,粘弹性参数和雷诺数等参数对压力以及剪切力影响.主要结论如下:(1) 管道扩张角度增加时,流向同一位置处径向压力以及壁面剪切应力随扩张角度减小;(2) 在同一扩张管道中,径向压力随着流向位移减小,收缩管与之相反;(3) 扩张角度与雷诺数对流场起主导作用,粘弹性系数起次要作用.  相似文献   

5.
针对下游带有障碍物的溃坝流动问题,本文基于两相流动模型,在有限元算法框架下对其进行数值模拟研究。依据水平集(Level Set)方法追踪运动界面,并引入了一个简单的修正技术,保证较好的质量守恒性。为了精确表示运动界面,采用稳定和有效的间断有限元方法求解双曲型Level Set及其重新初始化方程。对于两相统一Navier-Stokes方程,首先利用分裂格式对其解耦,然后通过SUPG (Streamline Upwind Petrov Galerkin)方法进行数值求解。模拟研究了下游带有障碍物的牛顿流体溃坝流动问题,得到的数值结果与文献已有模拟结果及实验结果均吻合较好。此外,还考虑了幂律型非牛顿流体,并分析了不同特性非牛顿流体对于溃坝流动过程和界面形态等的影响。  相似文献   

6.
单桦  王家碌  刘霄峰  沈熊 《力学学报》1996,28(5):597-602
应用双点激光多普勒测速装置对弯曲槽道中充分发展的湍流进行了相关测量,流动的雷诺数为5000左右(以槽道中心速度为特征速度,以半槽宽为特征长度).通过同时测量双点的瞬时流速,得到流向脉动速度沿流向、展向、横向的空间相关系数曲线,并应用条件采样技术(VITA)对实验数据进行了分析  相似文献   

7.
徐诚 《实验力学》1994,9(2):124-133
阐述脉冲热线测量原理、探针结构与数据处理方法;在实验雷诺数Rec=6.67×10^5时,用脉冲热线技术定量测量了 由楔形体模型产生的含回流的高湍流流动,得到了壁面切应力、流向时均速度、回流因子、脉动速度、偏斜因子和平坦因子等重要参数,提示了分离泡流动结构与特征。  相似文献   

8.
谢永  刘盼  蔡国平 《力学学报》2014,46(1):128-135
以柔性板为对象,开展了结构挠性参数辨识技术的研究. 给出了一种基于加速度信号输出的特征系统实现算法的计算格式,基于粒子群优化算法给出了加速度传感器在柔性板上的优化位置. 仿真结果显示,粒子群方法能够有效地确定出传感器在板上的优化位置,特征系统实现算法能够有效地辨识出结构的挠性参数.   相似文献   

9.
本文研究用时间稳定法求解高超声速三维化学非平衡流动简化NS方程,把整个非平衡流体动力学问题分裂为流体力学问题和化学问题。流体力学与化学问题之间的耦合通过迭代方式加以处理。考虑高温空气分解与电离,七个化学组元,并认为化学反应是以有限速率进行的.差分格式采用无自由参数的混合反扩散格式,激波及壁面处理应用特征线理论.对来流攻角为10°,马赫数为26,飞行高度为85km的钝锥体,给出了流场参数和物面加热率的数值计算结果.  相似文献   

10.
以柔性板为对象,开展了结构挠性参数辨识技术的研究. 给出了一种基于加速度信号输出的特征系统实现算法的计算格式,基于粒子群优化算法给出了加速度传感器在柔性板上的优化位置. 仿真结果显示,粒子群方法能够有效地确定出传感器在板上的优化位置,特征系统实现算法能够有效地辨识出结构的挠性参数.  相似文献   

11.
This paper considers the streamline‐upwind Petrov–Galerkin (SUPG) method applied to the unsteady compressible Navier–Stokes equations in conservation‐variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, and the second‐order accurate time discretization are presented. The numerical method is discussed in detail. The performance of the algorithm is then investigated by considering inviscid flow past a circular cylinder. Validation of the finite element formulation via comparisons with experimental data for high‐Mach number perfect gas laminar flows is presented, with a specific focus on comparisons with experimentally measured skin friction and convective heat transfer on a 15° compression ramp. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
We have conducted the linear stability analysis of flow in a channel with periodically grooved parts by using the spectral element method. The channel is composed of parallel plates with rectangular grooves on one side in a streamwise direction. The flow field is assumed to be two‐dimensional and fully developed. At a relatively small Reynolds number, the flow is in a steady‐state, whereas a self‐sustained oscillatory flow occurs at a critical Reynolds number as a result of Hopf bifurcation due to an oscillatory instability mode. In order to evaluate the critical Reynolds number, the linear stability theory is applied to the complex laminar flow in the periodically grooved channel by constituting the generalized eigenvalue problem of matrix form using a penalty‐function method. The critical Reynolds number can be determined by the sign of a linear growth rate of the eigenvalues. It is found that the bifurcation occurs due to the oscillatory instability mode which has a period two times as long as the channel period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
A new interface capturing algorithm is proposed for the finite element simulation of two‐phase flows. It relies on the solution of an advection equation for the interface between the two phases by a streamline upwind Petrov–Galerkin (SUPG) scheme combined with an adaptive mesh refinement procedure and a filtering technique. This method is illustrated in the case of a Rayleigh–Taylor two‐phase flow problem governed by the Stokes equations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
In our previous research, the modified Galerkin method was proposed as one of the most efficient methods for the analyses of convection-diffusion problems and two-dimensional viscous fluid flow problems. In this modified Galerkin method, the inertia term is considered explicitly, so only the symmetrical matrixes appear. Then an artificial viscosity is introduced through an error analysis approach to improve its accuracy and stability. In this paper, we proposed a new finite element formulation for three-dimensional incompressible viscous fluid flow analysis. This formulation (‘MS’ algorithm and ‘MSR’ algorithm) is based on the modified Galerkin method coupled with the Semi-Implicit Method for Pressure-Linked Equations. The cubic cavity flow problems were investigated for the Reynolds number of 400, 1,000, 2,000 and 3,200 using non-uniform meshes. Finally, we confirmed the effectiveness of our proposed method through the comparison with other research works.  相似文献   

15.
In order to apply the lattice Boltzmann method (LBM) for modeling passive heat transfer at high Reynolds numbers, a number of models were proposed by introducing the large eddy simulation (LES) into the LBM framework to improve numerical stability. Our study finds that the generalized form of interpolation-supplemented LBM (GILBM), likewise, can locally modify the dimensionless relaxation time, thus enhancing the numerical stability at high Reynolds numbers. Given additional advantages of the GILBM in dealing with complicated geometries and improving computing accuracy, a thermal LBM-LES model in body-fitted coordinates is established in this paper. Numerical validation is performed by investigating the flow and heat transfer around a circular cylinder over a wide range of Reynolds numbers. The obtained results agree well with both experimental and numerical data in the previous work. Meanwhile, the effects of Reynolds number and Prandtl number on thermodynamic features of flow past a circular cylinder are revealed. It is found out that when the Reynolds number exceeds the critical value, the local Nusselt number fluctuates rapidly in a specific region of the rear cylinder surface affected by the Prandtl number. In the near-wake region, the temperature field exhibits significant dependence on the Prandtl number at moderate Reynolds numbers, while such effects turn to be slight at high Reynolds numbers.  相似文献   

16.
Mixed finite-element methods for computation of viscoelastic flows governed by differential constitutive equations vary by the polynomial approximations used for the velocity, pressure, and stress fields, and by the weighted residual methods used to discretize the momentum, continuity, and constitutive equations. This paper focuses on computation of the linear stability of the planar Couette flow as a test of the numerical stability for solution of the upper-convected Maxwell model. Previous theoretical results prove this inertialess flow to be always stable, but that accurate calculation is difficult at high De because eigenvalues with fine spatial structure and high temporal frequency approach neutral stability. Computations with the much used biquadratic finite-element approximations for velocity and deviatoric stress and bilinear interpolation for pressure demonstrate numerical instability beyond a critical value of De for either the explicitly elliptic momentum equation (EEME) or elastic-viscous split-stress (EVSS) formulations, applying Galerkin's method for solution of the momentum and continuity equations, and using streamline upwind Petrov-Galerkin (SUPG) method for solution of the hyperbolic constitutive equation. The disturbance that causes the instability is concentrated near the stationary streamline of the base flow. The removal of this instability in a slightly modified form of the EEME formulation suggests that the instability results from coupling the approximations to the variables. A new mixed finite-element method, EVSS-G, is presented that includes smooth interpolation of the velocity gradients in the constitutive equation that is compatible with bilinear interpolation of the stress field. This formulation is tested with SUPG, streamline upwinding (SU), and Galerkin least squares (GLS) discretization of the constitutive equation. The EVSS-G/SUPG and EVSS-G/SU do not have the numerical instability described above; linear stability calculations for planar Couette flow are stable to values of De in excess of 50 and converge with mesh and time step. Calculations for the steady-state flow and its linear stability for a sphere falling in a tube demonstrate the appearance of linear instability to a time-periodic instability simultaneously with the apparent loss of existence of the steady-state solution. The instability appears as finely structured secondary cells that move from the front to the back of the sphere.Financial support for this research was given by the National Science Foundation, the Office of Naval Research, and the Defense Research Projects Agency. Computational resources were supplied by a grant from the Pittsburgh National Supercomputer Center and by the MIT Supercomputer Facility.  相似文献   

17.
This study presents characteristic‐based split (CBS) algorithm in the meshfree context. This algorithm is the extension of general CBS method which was initially introduced in finite element framework. In this work, the general equations of flow have been represented in the meshfree context. A new finite element and MFree code is developed for solving flow problems. This computational code is capable of solving both time‐dependent and steady‐state flow problems. Numerical simulation of some known benchmark flow problems has been studied. Computational results of MFree method have been compared to those of finite element method. The results obtained have been verified by known numerical, analytical and experimental data in the literature. A number of shape functions are used for field variable interpolation. The performance of each interpolation method is discussed. It is concluded that the MFree method is more accurate than FEM if the same numbers of nodes are used for each solver. Meshfree CBS algorithm is completely stable even at high Reynolds numbers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A new upwind finite element scheme for the incompressible Navier-Stokes equations at high Reynolds number is presented. The idea of the upwind technique is based on the choice of upwind and downwind points. This scheme can approximate the convection term to third-order accuracy when these points are located at suitable positions. From the practical viewpoint of computation, the algorithm of the pressure Poisson equation procedure is adopted in the framework of the finite element method. Numerical results of flow problems in a cavity and past a circular cylinder show excellent dependence of the solutions on the Reynolds number. The influence of rounding errors causing Karman vortex shedding is also discussed in the latter problem.  相似文献   

19.
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Thedifferentialquadraturemethod(DQM)proposedbyR.Bellman[1,2]hasbeensuccessfullyemployedinnumericalcomputationsofproblemsinengineeringandphysicalscience.BecausetheinformationonallgridpointsisusedtofitthederivativesatgridpointsintheDQM,itisenoughtoobta…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号