首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rheological behavior of a dielectric fluid is studied in nonuniform electric fields which are generated by an electrode covered with flocked fabrics. Although no electrorheological (ER) effects are observed in uniform fields between metal electrodes with smooth surfaces, striking increases in viscosity and elastic response are induced by the electrode with flocked fabrics. The presence of flocked fabrics does not have a significant effect on the fluid rheology without electric fields. The ER behavior and current density are influenced by the fiber length even at a constant field strength. When a very small amount of fine particles is introduced in the electrified fluid without shear, we can see the rapid and large-scale motion of particles between the tips of fibers and plate electrode. In high DC fields, the Coulomb force acting on a free charge often gives rise to the secondary motion of fluid. The local motion of fluid in high electric fields is refereed to as electrohydrodynamic (EHD) convection. The additional energy may be required to change the periodic patterns of EHD convection by forced shear. Therefore, the ER effect demonstrated by the modification of electrode with flocked fabrics can be attributed to a combined effect of EHD convection and external shear. Received: 10 March 1998 Accepted: 1 June 1998  相似文献   

2.
The rheological behavior of insulating oils is studied in nonuniform electric fields which are generated by an electrode covered with flocked fabric. Although the oils show no electrorheological effects in uniform fields between metal electrodes with smooth surfaces, the flocked fabric leads to a striking increase of viscosity in steady shear. The viscosity enhancement increases with decreasing zero-field viscosity and decreasing conductivity of oils. In the limit of zero shear rate, the oils with low conductivity behave as solids with yield stress. When a very small quantity of fine particles is introduced into electrified oils without shear, a rapid and large-scale motion of particles is observed between the tips of fibers and the plate electrode. The local motion of fluids in high electric fields is referred to as electrohydrodynamic (EHD) convection. Periodic patterns of circulation flow are formed in static oils. The electric energy which is dissipated during the circulation motion contributes to holding the periodic flow in static oils. When the stress is very low, the periodic patterns are not broken down. The yield stress corresponds to the force required to rupture the domain structures of EHD convection. In shear fields, the additional energy may be required to change the periodic patterns of EHD convection. The striking increase of viscosity in steady shear can be attributed to the interactions between EHD convection and external shear. Received: 31 August 1998 Accepted: 17 February 1999  相似文献   

3.
Fluid property effects on electrohydrodynamic (EHD) heat transfer enhancement were investigated. Heat transfer, pressure drop, electrical power requirements, and the transition between the viscous dominated and electrically dominated flow regimes as a function of fluid properties were examined using three cooling oils having widely varying physical properties. Low viscosity and low electrical conductivity gave the greatest heat transfer enhancement for a given electrical power input. The required electrical power to achieve a specified heat transfer enhancement was greater for working fluids that had a small charge relaxation time, defined as the ratio of the electrical permittivity to the electrical conductivity. These results correlate well with available experimental and analytical data. A theoretical prediction of the effect of fluid properties and forced flow rate on the onset of EHD enhancement was experimentally verified. The onset of significant EHD heat transfer enhancement occurs most readily in low viscosity liquids at low Reynolds number flows for a given electrical power input.  相似文献   

4.
With an ever increasing demand for more effective heat sinks, liquid based electronic cooling has become a new prospect in the field. The present study introduces an electrohydrodynamic (EHD) pump with a simple design for dielectric liquids which have potential applications for electronic cooling. The pump consists of an eccentrically sandwiched wire electrode placed at the horizontal centerline between two parallel flat-plate electrodes. The EHD flow of dielectric liquid induced by the space charge generated due to the Onsager effect was obtained by the numerical solution of the Poisson–Nernst–Planck equations for ion transport and the Navier–Stokes equations for fluid flow. Good agreement obtained in the comparison of the numerical and the experimental results of velocity for the centrally sandwiched wire electrode case confirmed the validity of the numerical results. For a fixed voltage, the pump flow rate depends on the eccentricity of the wire electrode with respect to the plate electrodes and also with the electrode dimensions. By using the Taguchi method an optimum design for the EHD pump is obtained considering the wire electrode diameter, the flat plate electrode length and the eccentricity (the horizontal distance between the centers of wire and flat-plate electrodes) as the design parameters for fixed channel dimensions.  相似文献   

5.
流场中聚合物共混体系液滴形变的理论模型   总被引:3,自引:0,他引:3  
张洪斌  周持兴 《力学进展》1998,28(3):402-413
讨论了两相聚合物共混体系中,悬浮于另一种牛顿(或粘弹)液体中的牛顿(或粘弹)液滴的形变理论模型.影响液滴形变的主要因素有两相的组成、粘度比和弹性比、动态界面张力、临界界面张力系数,外流场形式及其强度.对于两相均为牛顿流体的体系,理论预测能够与实验相符;对于两相(或其中一相)为粘弹流体的体系,由于弹性的影响而使液滴形变的研究变得复杂,理论模型尚需完善.建立完整的液滴形变理论模型还需深入研究界面层、微观分子形变、液滴之间及液滴和连续相介质之间的相互作用对液滴形变的影响  相似文献   

6.
For Newtonian fluids, the engineering predictions for pressure drop in turbulent pipe flow are well established. However, in the case of non-Newtonian liquids, only a few design techniques have been proposed and these do not share a common basis with the approach for Newtonian systems. This present work attempts to provide a common basis for both Newtonian and non-Newtonian systems in situations where anomalous wall effects are absent. Previously published experimental data suggest that if the Reynolds number is calculated on the basis of the apparent viscosity at the wall then the standard Newtonian correlations can be used for the prediction of pressure drop. The use of the wall viscosity in defining the Reynolds number also serves as a test for anomalous behaviour. Any departure of the experimental data from the Newtonian turbulent friction factor correlation indicates anomalous behaviour.  相似文献   

7.
In elastohydrodynamic lubrication (EHD) three important non-Newtonian effects arise. These are volume viscoelasticity, shear viscoelasticity, and the variation of viscosity with shear rate. All these effects tend to decrease the shear stress or traction.In this paper the effect of volume relaxation of EHD is examined using experimental viscosity data obtained in a simple viscometric flow. It is shown that the viscosity of a fluid during EHD is unlikely to reach its equilibrium value. Approximations to the viscosity as a function of time lead to the conclusion that volume and shear viscoelasticity have effects which are of the same order of magnitude and will be difficult to separate except by an exact knowledge of the shear rate and pressure profiles.  相似文献   

8.
The viscoelastic-capillary model to predict approximately coating windows for the stable operations of viscoelastic coating liquids is derived using a lubrication approximation in slot coating processes. Pressure distributions and velocity profiles for viscoelastic liquids based on the Oldroyd-B and Phan-Thien and Tanner (PTT) models are solved in the coating bead region considering the Couette-Poiseuille flow feature and the pressure jumps at upstream and downstream menisci. Practical operating limits for the uniform coating of rheologically different liquids that are free from leaking and bead break-up defects are constructed under various conditions, incorporating the position of the upstream meniscus as an important indicator while determining limits. The shift of the uniform operating range shows different patterns for the Oldroyd-B liquid with a constant shear viscosity and the PTT liquid with a shear-thinning nature in comparison with the Newtonian case. The windows predicted by the simplified model are corroborated with experimental observations for one Newtonian and two viscoelastic liquids.  相似文献   

9.
The theoretical force-height relationships of Newtonian and pseudo plastic liquids compressed between slightly tilted frictionless plates are compared with those produced when the plates are perfectly parallel. It is shown that a very small inclination angle can distort the flow curve to such an extent that a Newtonian liquid will appear as a pseudo plastic fluid, and a pseudo plastic liquid as having a flow index considerably smaller than its true one. The shape of the biaxial elongational viscosity vs biaxial strain rate relationship is also highly sensitive to the plates' inclination angle. Thus, if an experimental force-height relationship is used to determine a material's biaxial elongational viscosity, an unsuspected slight tilt will result in a considerable underestimate of the viscosity. A slight tilt will also produce an apparent strain rate dependency in a Newtonian liquid, which obviously does not exist. The mathematical model developed to reach these conclusions was tested with commercial mayonnaise, a self-lubricating fluid. A reasonable agreement was found between the predicted force-height relationships and those experimentally determined at tilts of 1°, 3°, and 5°. Received: 4 August 2000 Accepted: 21 August 2000  相似文献   

10.
The application of long capillary Ubbelohde viscometers in the determination of low viscosities is described. Corrections and measurement uncertainties are discussed. Viscosity and density data are given for 18 Newtonian liquids of commercially available purity, with viscosities below about 1 mm2/s. For several liquids the commonly used purity specifications were found to be sufficient to qualify these liquids as viscosity standards, which can be used for viscometer calibration.  相似文献   

11.
A thin film of low-viscosity lubricating liquid between a solid wall and a viscous material reduces shear stress on the latter and tends to make it flow as though it were slipping along the wall. The result when the lubricated material is being squeezed out of the gap between approaching parallel plates is flow more nearly irrotational, or extensional, the more effective the lubricating film on the plates. Two Newtonian analyses of this flow situation are reported. One is an approximate, asymptotic analytical solution for Newtonian lubricating flow in the films and combined mixed flow, shear and extension, in the viscous layer. The second is a full two-dimensional axisymmetric solution of the momentum and continuity equations along with the kinematic condition which governs the motion of the interface. Both analyses indicate that there are two limiting flow regimes, depending on the ratio of the thickness of each of the two phases to radius and on the viscosity ratio of the two liquids. In one limit the flow is parallel squeezing and the lubricant layer slowly thins and persists a long time. In the other the lubricant is expelled preferentially. Implications of the results are discussed for rheological characterization of viscoelastic liquids and for prediction of lubricated or autolubricated flows in processing situations.  相似文献   

12.
A novel geometry for generating a viscometric flow presents advantages of both cone and plate and parallel plate geometries, regarding uniform shear field and adjustable range of measurement. Kinematics and dynamics of the generated flow have been described mathematically utilizing an orthogonal curvilinear coordinate system based on the shapes of the shearing surfaces which are similar to the surface that generates the flow. Simple equations that allow the calculation of quantities of experimental interest in the rheological characterization of liquid materials, namely, shear rate, shear stress and two normal stress differences, have also been derived.The geometry, called pseudosphere, was tested with two types of fluids (Newtonian and pseudoplastic). Results show that the geometry can be used with low viscosity liquids (Newtonian liquids) by only adjusting the gapH. The behavior of pseudoplastic fluids for both low and moderately high viscosity could also be studied with this geometry. Very reproducible results were obtained when compared with those obtained with cone and plate geometry. Regions of lower shear rate could be studied using only the pseudosphere geometry.  相似文献   

13.
Predictions of pressure drop and holdup are presented for the stratified flow of gas and non-Newtonian liquid obeying the Ostwald-de Waele power law model. The model of Taitel & Dukler (1976) for gas/Newtonian liquid flow is extended to liquids possessing either shear-thinning or shear-thickening laminar flow behaviour and computed results are given for flow behaviour indices in the range 0.1 ≤ n ≤ 2. In particular, conditions are defined for drag reduction of the liquid flow by the presence of the gas. It is concluded that drag reduction occurs over the largest ranges of liquid and gas flow rates at the lowest n values, provided that liquid flow remains laminar, but that maximum drag reduction may be expected for shear-thickening liquids with n values of 2 or greater. Ratios of the liquid flow rate in the presence of gas to that for liquid flow alone under a constant pressure gradient are also presented. These ratios frequently exceed unity and are greatest for highly shear-thinning liquids.Although the Taitel & Dukler approach is consistent with experiments on gas/Newtonian liquid flow, and, in addition, appears to be valid for immiscible Newtonian liquid-liquid systems, provided that the viscosity ratio of the two phases is at least five, experiments are required to confirm its applicability for gas/non-Newtonian systems.  相似文献   

14.
Can extensional viscosity be measured with opposed-nozzle devices?   总被引:4,自引:0,他引:4  
Opposed-nozzle devices are widely used to try to measure the extensional viscosity of low-viscosity liquids. A thorough literature survey shows that there are still several unanswered questions on the relationship between the quantity measured in opposed-nozzle devices and the true extensional viscosity of the liquids. In addition to extensional stresses, opposed nozzle measurements are influenced by dynamic pressure, shear on the nozzles, and liquid inertia. Therefore the ratio of the apparent extensional viscosity that is measured to the shear viscosity that is independently measured is greater than three even for Newtonian liquids. The effect of inertia on the extensional measurements is analyzed by computer-aided solution of the Navier-Stokes system, and by experiments on low-viscosity Newtonian liquids(1 mPa sS 800 mPa s). The effect of nozzle separation-to-diameter ratio on the average residence time of the liquid is analyzed under the assumption of simple extensional flow kinematics. The average residence time of the liquid is independent of this ratio unless the radial inflow section of the extensional flow volume is related to the nozzle separation. Experiments indicate that in some cases widening the gap lowers the apparent extensional viscosity that is measured, whereas in other cases the opposite is true. In the light of these theoretical considerations and experimental observations, the use of systematic corrections to extensional viscosity measurements on non-Newtonian liquids is not recommended. Thus opposed nozzle devices should be considered as useful indexers rather than rheometers. Finally, measurements on a series of semi-dilute solutions of high molecular weight poly(ethylene oxide) in. water are also reported.Dedicated to the memory of Anastasios C. Papanastasiou  相似文献   

15.
A study has been made of the motion of long bubbles in inclined pipes containing viscous Newtonian and non-Newtonian liquids. A semi-theoretical expression for the rise velocity of air bubbles in water is derived on the hypothesis that the dominant factor is the momentum exchange of the bubble underflow, i.e. the bubble nose shape. The correlation calls on empirical inputs from established literature on bubble rise speeds at high Reynolds number. The effects of increasing Newtonian viscosity are analysed with reference to the momentum exchange and it is shown how viscosity reduces the inclination dependence of the bubble Froude number. Results from an experimental survey in seven different non-Newtonian liquids in three different diameter pipes are presented. These data are correlated so as to decouple the effects of surface tension and viscosity. An empirical relation is proposed for the effective shear rate in the fluid travelling around the bubble nose. Our correlation is compared to literature data from a broad range of Reynolds numbers with excellent agreement except at shallow angles.  相似文献   

16.
The mechanism of the electrorheological (ER) effect in two types of liquid crystalline polymer (LCP)/dimethylsiloxane (DMS) blends was investigated by rheological measurements and by structure observation under electric field and shear flow. The results show that the phase structures of these immiscible blends can be categorized into slipping (low viscosity) and non-slipping (high viscosity) states. In the non-slipping state, higher viscosity LCP domains connect the electrodes. In the slipping state, on the other hand, LCP domains do not connect the electrodes and the shear is mainly confined in the lower viscosity DMS domains. The ER effect (electrically induced viscosity increase) originates from the electrically induced slipping to non-slipping transition. In one of the blends, the ER effect occurs only at high shear rate, since this blend is in non-slipping state even under no field if the shear rate is low. Received: 29 April 1997 Accepted: 3 November 1997  相似文献   

17.
Numerical simulations of a droplet passing through an axisymmetric microfluidic contraction are presented, focusing on systems where one of the two liquids present is shear thinning. The simulations are performed using a transient Volume of Fluid (VOF) algorithm. When the droplet is shear thinning and the surrounding phase Newtonian, droplets deform in a similar way to Newtonian droplets that have a viscosity equal to the average viscosity of the shear thinning fluid while it is within the contraction. When the surrounding phase is shear thinning and the droplet Newtonian, droplets deform in a similar way to droplets contained within a Newtonian liquid that has a viscosity that is lower than that of the droplet. In both cases the behaviour of the shear thinning fluid can be broadly described in terms of a ‘characteristic’ Newtonian viscosity: However, determining the exact value of this viscosity without performing a full shear thinning simulation is not possible.  相似文献   

18.
A computational analysis is carried out to ascertain the effects of steady and pulsatile co-current flow, on the dynamics of an air bubble rising in a vertical tube containing water or a solution of Carboxymethylcellulose (CMC) in water. The mass fraction (mf) of CMC in the solution is varied in the range 0.1%  mf  1% to accommodate zero-shear dynamic viscosities in the range 0.009–2.99 Pa-s. It was found that the transient and time-averaged velocities of Taylor bubbles are independent of the bubble size under both steady as well as pulsatile co-current flows. The lengths of the Taylor bubbles under the Newtonian conditions are found to be consistently greater than the corresponding shear-thinning non-Newtonian conditions for any given zero-shear dynamic viscosity of the liquid. In contrast to observations in stagnant liquid columns, an increase in the dynamic viscosity of the liquid (under Newtonian conditions) results in a concomitant increase in the bubble velocity, for any given co-current liquid velocity. In shear-thinning liquids, the change in the bubble velocity with an increase in mf is found to be relatively greater at higher co-current liquid velocities. During pulsatile shear-thinning flows, distinct ripples are observed to occur on the bubble surface at higher values of mf, the locations of which remain stationary with reference to the tube for any given pulsatile flow frequency, while the bubble propagated upwards. In such a pulsatile shear-thinning flow, a localised increase in dynamic viscosity is accompanied near each ripple, which results in a localised re-circulation region inside the bubble, unlike a single re-circulation region that occurs in Newtonian liquids, or shear-thinning liquids with low values of mf. It is also seen that as compared to frequency, the amplitude of pulsatile flow has a greater influence on the oscillating characteristics of the rising Taylor bubble. The amplitude of oscillation in the bubble velocity increases with an increase in the CMC mass fraction, for any given value of pulsatile flow amplitude.  相似文献   

19.
A characteristic equation is derived that describes the spatial decay of linear surface gravity waves on Maxwell fluids. Except at small frequencies, the derived dispersion relation is different from the temporal decay dispersion relation which is normally studied within fluid mechanics. The implications for waves on viscous Newtonian fluids using the two different dispersion relations is briefly discussed. The wave number is measured experimentally as function of the frequency in a horizontal canal. Seven Newtonian fluids and four viscoelastic liquids with constant viscosity have been used in the experiments. The spatial decay theory for Newtonian fluids fits well to the experimental data. The model and experiments are used to determine limits for the Maxwell fluid time numbers for the four viscoelastic liquids. As a result of low viscosity it was not possible within this study to obtain these time numbers from oscillatory experiments. Therefore, a comparison of surface gravity wave experiments with theory is applicable as a method to evaluate memory times of low viscosity viscoelastic fluids.  相似文献   

20.
Experiments are described in which two cylinders of the same radii-rotate with identical speeds in a bath of Newtonian or non-Newtonian liquid. The torque on one of the cylinders is measured as a function of rotational speed for various values of the cylinder separation and the flow patterns are observed by a dye-injection technique.The observed experimental results for a Newtonian liquid correlate well with the theoretical predictions but a similar correlation in the case of elastic liquids is made difficult by the strongly three-dimensional nature of the flow in this case and the difficulty in estimating the amount of liquid passing through the rollers. The possibility of flow reversal effects due to the high Trouton ratios in the case of the elastic liquids is investigated both experimentally and theoretically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号