首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.  相似文献   

2.
蠕变压痕实验的计算机模拟   总被引:2,自引:0,他引:2  
采用有限元的方法对双相材料的蠕变压痕实验进行了数值模拟,在有限元数值解的基础上,定义了相应于传统单轴蠕变实验的“等效应力”和“等效应变”,建立了蠕变压痕实验同传统单轴蠕变实验之间的关系,给出了确定薄膜蠕变应力指数和蠕变常数的方法;同时数值解的结果表明,实验中通过控制压痕深度不超过薄膜厚度的 5%~10%,忽略基体的硬化指数对确定薄膜性能的影响存在一定的误差,但基体的弹性模量对确定薄膜的蠕变性能影响不大。  相似文献   

3.
An expanding cavity model (ECM) for determining indentation hardness of elastic strain-hardening plastic materials is developed. The derivation is based on a strain gradient plasticity solution for an internally pressurized thick-walled spherical shell of an elastic power-law hardening material. Closed-form formulas are provided for both conical and spherical indentations. The indentation radius enters these formulas with its own dimensional identity, unlike that in classical plasticity based ECMs where indentation geometrical parameters appear only in non-dimensional forms. As a result, the newly developed ECM can capture the indentation size effect. The formulas explicitly show that indentation hardness depends on Young’s modulus, yield stress, strain-hardening exponent and strain gradient coefficient of the indented material as well as on the geometry of the indenter. The new model reduces to existing classical plasticity based ECMs (including Johnson’s ECM for elastic–perfectly plastic materials) when the strain gradient effect is not considered. The numerical results obtained using the newly developed model reveal that the hardness is indeed indentation size dependent when the indentation radius is very small: the smaller the indentation, the larger the hardness. Also, the indentation hardness is seen to increase with the Young’s modulus and strain-hardening level of the indented material for both conical and spherical indentations. The strain-hardening effect on the hardness is observed to be significant for materials having strong strain-hardening characteristics. In addition, it is found that the indentation hardness increases with decreasing cone angle of the conical indenter or decreasing radius of the spherical indenter. These trends agree with existing experimental observations and model predictions.  相似文献   

4.
Two expanding cavity models (ECMs) are developed for describing indentation deformations of elastic power-law hardening and elastic linear-hardening materials. The derivations are based on two elastic–plastic solutions for internally pressurized thick-walled spherical shells of strain-hardening materials. Closed-form formulas are provided for both conical and spherical indentations, which explicitly show that for a given indenter geometry indentation hardness depends on Young’s modulus, yield stress and strain-hardening index of the indented material. The two new models reduce to Johnson’s ECM for elastic-perfectly plastic materials when the strain-hardening effect is not considered. The sample numerical results obtained using the two newly developed models reveal that the indentation hardness increases with the Young’s modulus and strain-hardening level of the indented material. For conical indentations the values of the indentation hardness are found to depend on the sharpness of the indenter: the sharper the indenter, the larger the hardness. For spherical indentations it is shown that the hardness is significantly affected by the strain-hardening level when the indented material is stiff (i.e., with a large ratio of Young’s modulus to yield stress) and/or the indentation depth is large. When the indentation depth is small such that little or no plastic deformation is induced by the spherical indenter, the hardness appears to be independent of the strain-hardening level. These predicted trends for spherical indentations are in fairly good agreement with the recent finite element results of Park and Pharr.  相似文献   

5.
The aim of indentation analysis is to link indentation data, typically an indentation force vs. indentation depth curve, Ph, to meaningful mechanical properties of the indented material. While well established for time independent behavior, the presence of a time dependent behavior can strongly affect both the loading and the unloading responses. The paper presents a framework of viscoelastic indentation analysis based on the method of functional equations, developed by Lee and Radok [1960, The contact problem for viscoelastic bodies, J. Appl. Mech. 27, 438–444]. While the method is restricted to monotonically increasing contact areas, we show that it remains valid at the very beginning of the unloading phase as well. Based on this result, it is possible to derive closed form solutions following the classical procedure of functional formulations of viscoelasticity: (1) the identification of the indentation creep function, which is the indentation response to a Heaviside load; and (2) a convolution integral of the load history over the indentation creep function. This is shown here for a trapezoidal loading by a conical indenter on three linear isotropic viscoelastic materials with deviator creep: the 3-parameter Maxwell model, the 4-parameter Kelvin–Voigt model and the 5-parameter combined Kelvin–Voigt–Maxwell model. For these models, we derive closed form solutions that can be employed for the back-analysis of indentation results from the loading and holding period and for the definition of unloading time criteria that ensure that viscous effects are negligible in the unloading response.  相似文献   

6.
Asphalt binders are common construction materials, however due to time- and temperature- dependence, their mechanical properties are often difficult to characterize. Several standard tests methods exist to describe their complex behavior. This paper presents an exploratory feasibility study of a flat-tip indentation testing to analyze the linear viscoelastic properties of asphalt binders. Depth-sensing indentation testing has been extensively used to characterize the properties of many engineering materials, however the applications to asphalt binders are very limited. This paper presents a simple solution for the creep compliance in tension derived for flat-tipped indenter. This solution was verified with the Finite Element Analysis and then applied to the experimental results from the indentation testing performed on one typical unmodified asphalt binder. The testing was conducted at three different low temperatures and under three different creep load levels to verity the linearity of the response, and to evaluate the robustness and applicability of the indentation method. Furthermore, the creep compliance functions determined from the indentation testing were compared with a more traditional 3-point bending experiments. The results show that there is a non-uniform discrepancy between the two testing methods, most likely due to nonlinear behavior of the asphalt binder at higher temperatures and micro-damage of the binder samples at lower temperatures. Other possible sources of error between indentation and 3-point bending are problems determining the initial tip-specimen contact surface and possible tip-specimen adhesion. It is concluded that flat-tipped indentation at low temperatures should be performed at lower load levels to avoid excessive stress concentrations that leads to micro-damage and nonlinear response of asphalt binders. Alternatively, asphalt binders at low temperatures could be evaluated using different indenter geometries, such as spherical or pyramidal, using corresponding parameter interpretation procedures.  相似文献   

7.
纳米压痕过程的三维有限元数值试验研究   总被引:15,自引:3,他引:15  
采用有限元方法模拟了纳米压痕仪的加、卸载过程,三维有限元模型考虑了纳米压痕仪的标准Berkovich压头.介绍了有限元模型的几何参数、边界条件、材料特性与加载方式,讨论了摩擦、滑动机制、试件模型的大小对计算结果的影响,进行了计算结果与标准试样实验结果的比较,证实了模拟的可靠性.在此基础上,重点研究了压头尖端曲率半径对纳米压痕实验数据的影响.对比分析了尖端曲率半径r=0与r=100nm两种压头的材料压痕载荷—位移曲线.结果表明,当压头尖端曲率半径r≠0时,基于经典的均匀连续介质力学本构理论、传统的实验手段与数据处理方法,压痕硬度值会随着压痕深度的减小而升高.  相似文献   

8.
The introduction of controlled gradients in plastic properties is known to influence the resistance to damage and cracking at contact surfaces in many tribological applications. In order to assess potentially beneficial effects of plastic property gradients in tribological applications, it is essential first to develop a comprehensive and quantitative understanding of the effects of yield strength and strain hardening exponent on contact deformation under the most fundamental contact condition: normal indentation. To date, however, systematic and quantitative studies of plasticity gradient effects on indentation response have not been completed. A comprehensive parametric study of the mechanics of normal indentation of plastically graded materials was therefore undertaken in this work by recourse to finite element method (FEM) computations. On the basis of a large number of computational simulations, a general methodology for assessing instrumented indentation response of plastically graded materials is formulated so that quantitative interpretations of depth-sensing indentation experiments could be performed. The specific case of linear variation in yield strength with depth below the indented surface is explored in detail. Universal dimensionless functions are extracted from FEM simulations so as to predict the indentation load versus depth of penetration curves for a wide variety of plastically graded engineering metals and alloys for interpretation of, and comparisons with, experimental results. Furthermore, the effect of plasticity gradient on the residual indentation pile-up profile is systematically studied. The computations reveal that pile-up of the graded alloy around the indenter, for indentation with increasing yield strength beneath the surface, is noticeably higher than that for the two homogeneous reference materials that constitute the bounding conditions for the graded material. Pile-up is also found to be an increasing function of yield strength gradient and a decreasing function of frictional coefficient. The stress and plastic strain distributions under the indenter tip with and without plasticity gradient are also examined to rationalize the predicted trends. In Part II of this paper, we compare the predictions of depth-sensing indentation and pile-up response with experiments on a specially made, graded model Ni-W alloy with controlled gradients in nanocrystalline grain size.  相似文献   

9.
IntroductionThecreepbehaviorofshortfiberreinforceMetalMatrixComposites (MMCs)dependsonthefollowingfactors,suchasthecreeppropertyofthematrix ,elasticandfracturespropertiesofthefiber,geometricparametersofthefibers,arrangementofthefibersandthepropertyofthef…  相似文献   

10.
We propose a dual indentation technique for the assessment of the cohesion and friction angle of cohesive-frictional materials of the Mohr–Coulomb type. The technique is based on a computational implementation of the yield design theorems applied to conical indentation tests with different apex angles. The upper bound solutions are found to be very close to flat indentation solutions available for cohesive-frictional materials. On this basis we derive fundamental hardness-to-cohesion solutions in function of the friction angle and the apex angle. By studying the property of these dimensionless relations, we show that the ratio of two hardness measurements obtained from indentation tests with different apex angles, allows one to determine the friction angle. This dual indentation method is applied to Berkovich and Corner Cube indenter assimilated to equivalent cones of different apex angle. The method is validated for a ‘model’ material, metallic glass, which has recently been identified as a cohesive-frictional materials. The only input to the method are two hardness values which we obtain by microindentation on metallic glass. The outcome are values of the cohesion and friction angle, which are found to be in excellent agreement with reported cohesion and friction angle values of metallic glass obtained by macroscopic triaxial testing and comprehensive finite-element backanalysis of indentation curves.  相似文献   

11.
Three-dimensional numerical simulations of Berkovich, Vickers and conical indenter hardness tests were carried out to investigate the influence of indenter geometry on indentation test results of bulk and composite film/substrate materials. The strain distributions obtained from the three indenters tested were studied, in order to clarify the differences in the load–indentation depth curves and hardness values of both types of materials. For bulk materials, the differentiation between the results obtained with the three indenters is material sensitive. The indenter geometry shape factor, β, for evaluating Young’s modulus for each indenter, was also estimated. Depending on the indenter geometry, distinct mechanical behaviours are observed for composite materials, which are related to the size of the indentation region in the film. The indentation depth at which the substrate starts to deform plastically is sensitive to indenter geometry.  相似文献   

12.
泥岩三轴蠕变实验研究   总被引:1,自引:0,他引:1  
张向东  傅强 《应用力学学报》2012,29(2):154-158,238
采用MTS伺服刚性压力实验机对高家梁煤矿泥岩进行了三轴蠕变实验研究,获得了泥岩在不同应力条件下的蠕变变形规律。实验表明围压对泥岩微观缺陷的发展有一定的限制作用。随着围压的增加,泥岩的三轴抗压强度和弹性模量均有所增加。在围压一定时:衰减蠕变量随轴压的增大而增大;衰减蠕变率随偏应力的增加而增大;稳态蠕变率随偏应力的增大而增大。在偏应力一定时,稳态蠕变率随围压的增大而减小。当围压大于4MPa后,围压的限制作用将明显减小。随着围压继续增大,稳态蠕变率变化并不明显。根据获得的实验数据,用回归法求出了H-K模型蠕变方程的参数。结果表明H-K模型能较好地模拟实验结果。在实际工程中可通过支护增加围压以提高围岩屈服强度,也可根据实际工程中泥岩蠕变的变化趋势确定合理的二次支护时间,避免流变破坏的发生。  相似文献   

13.
Fracture toughness is one of the crucial mechanical properties of brittle materials such as glasses and ceramics which demonstrate catastrophic failure modes. Conventional standardized testing methods adopted for fracture toughness determination require large specimens to satisfy the plane strain condition. As for small specimens, indentation is a popular, sometimes exclusive testing mode to determine fracture toughness for it can be performed on a small flat area of the specimen surface. This review focuses on the development of indentation fracture theories and the representative testing methods. Cracking pattern dependent on indenter geometry and material property plays an important role in modeling, and is the main reason for the diversity of indentation fracture theories and testing methods. Along with the simplicity of specimen requirement is the complexity of modeling and analysis which accounts for the semi-empirical features of indentation fracture tests. Some unresolved issues shaping the gap between indentation fracture tests and standardization are also discussed.  相似文献   

14.
功能梯度材料涂层半空间的轴对称光滑接触问题   总被引:2,自引:0,他引:2  
求解了功能梯度材料涂层半空间的轴对称光滑接触问题,其中梯度层剪切模量按照线性变化,利用Hankel积分变换方法求解微分方程,将问题化为具有Cauchy型奇异核的积分方程.数值方法求解表明:功能梯度材料涂层半空间在刚性柱形压头和球形压头作用下,接触表面分布应力,接触半径以及最大压痕受材料梯度效应的影响较大.  相似文献   

15.
Knowledge of the relationship between the penetration depth and the contact radius is required in order to determine the mechanical properties of a material starting from an instrumented indentation test. The aim of this work is to propose a new penetration depth–contact radius relationship valid for most metals which are deformed plastically by parabolic and spherical indenters. Numerical simulation results of the indentation of an elastic–plastic half-space by a frictionless rigid paraboloïd of revolution show that the contact radius–indentation depth relationship can be represented by a power law, which depends on the reduced Young’s modulus of the contact, on the strain hardening exponent and on the yield stress of the indented material. In order to use the proposed formulation for experimental spherical indentations, adaptation of the model is performed in the case of a rigid spherical indenter. Compared to the previous formulations, the model proposed in the present study for spherical indentation has the advantage of being accurate in the plastic regime for a large range of contact radii and for materials of well-developed yield stress. Lastly, a simple criterion, depending on the material mechanical properties, is proposed in order to know when piling-up appears for the spherical indentation.  相似文献   

16.
This paper presents the high temperature nanoindentation experiments performed on an aerospace polymer resin–PMR-15 polyimide. The sharp-tipped Berkovich nanoindenter equipped with a hot-stage heating system was used. The indentation experiments were performed using the “hold-at-the-peak” method at various indenter holding times and unloading rates. The creep effect was seen to decrease with increasing holding time and/or unloading rate. Procedures used to minimize the creep effect are investigated at both ambient and elevated temperatures so that the correct contact depth (together with modulus and hardness) can be determined from nanoindentation load-depth curve. The temperature dependent mechanical properties of PMR-15 are measured through the current nanoindenter and results are consistent with those obtained from macroscopic tests.  相似文献   

17.
Spherical indentation is studied based on numerical analysis and experiment, to develop robust testing techniques to evaluate isotropic elastic–plastic material properties of metals. The representative stress and plastic strain concept is critically investigated via finite element analysis, and some conditions for the representative values are suggested. The representative values should also be a function of material properties, not only indenter angle for sharp indenter and indentation depth for spherical indenter. The pros and cons of shallow and deep spherical indentation techniques are also discussed. For an indentation depth of 20% of an indenter diameter, the relationships between normalized indentation parameters and load–depth data are characterized, and then numerical algorithm to estimate material elastic–plastic curve is presented. From the indentation load–depth curve, the new approach provides stress–strain curve and the values of elastic modulus, yield strength, and strain-hardening exponent with an average error of less than 5%. The method is confirmed to be valid for various elastic properties of indenter. Experimental validation of the approach then is performed by using developed micro-indentation system. For the material severely disobeying power law hardening, a modified method to reduce errors of predicted material properties is contrived. It is found that our method is robust enough to get ideal power law properties, and applicable to input of more complex physics.  相似文献   

18.
纳米颗粒增强镍基MEMS器件材料的蠕变性能研究   总被引:1,自引:0,他引:1  
利用同步辐射LIGA微铸复合工艺,将纳米氧化物增强颗粒复合到微电子机械系统(MEMS)结构材料中。制作了专用夹具,采用微力材料试验机测量了纳米Al2O3颗粒增强镍基复合材料的强度为1GPa;将恒加载速率/载荷法和恒载荷法相结合,利用纳米压痕仪测量了该材料的室温蠕变速率敏感指数m。结果表明,LIGA复合技术得到的纳米颗粒增强镍基复合材料具有较高的强度;MEMS器件材料在室温下会发生蠕变;材料在相同压深下最大载荷不随加载速率而改变,加载段粘弹性和粘塑性变形极少;主要由局部高应力导致压痕蠕变;材料的蠕变速率敏感指数m值为0.004,说明纳米Al2O3颗粒可有效增强基体材料的抗蠕变能力;且不同恒.P/P下获得的m值基本相同,表示此种材料对加载速率不敏感。  相似文献   

19.
We use the Stroh formalism to study analytically generalized plane strain deformations of a linear elastic anisotropic layer bonded to a rigid substrate, and indented by a rigid cylindrical indenter. The mixed boundary-value problem is challenging since the a priori unknown deformed indented surface of the layer contacting the rigid cylinder is to be determined as a part of the solution of the problem. For a rigid parabolic prismatic indenter contacting either an isotropic layer or an orthotropic layer and a flat rigid punch indenting a half space, the computed solutions are found to agree well with those available in the literature. Parametric studies have been conducted to delimit the length and the thickness of the layer for which the derived relation between the axial load and the indentation depth caused by the rigid cylinder is valid. The indentation of a face centered cubic crystal with the plane of indentation oriented differently from the principal planes of symmetry has also been studied to illustrate the applicability of the technique to general layers made of anisotropic materials. Results presented herein can serve as benchmarks with which to compare solutions obtained by other methods.  相似文献   

20.
金属材料的强度与应力-应变关系的球压入测试方法   总被引:4,自引:0,他引:4  
压入法获取材料单轴应力-应变关系和抗拉强度对服役结构完整性评价有重要的基础意义.假定材料均匀连续、各向同性、应力应变关系符合Hollomon律,基于能量等效假定,即代表性体积单元(representativevolume element, RVE)的vonMises等效和有效变形域内能量中值等效假定,本文提出了关联材料载荷、深度、球压头直径和Hollomon律的四参数半解析球压入(semi-analyticalspherical indentation,SSI)模型.通过球压入载荷-深度试验关系获得材料的应力-应变关系和抗拉强度.考虑压入过程中的损伤效应,针对金属材料提出了用于球压入测试的材料弹性模量修正模型.对11种延性金属材料完成了球压入试验,采用本文提出的球压入试验方法测到的弹性模量、应力-应变关系和抗拉强度与单轴拉伸试验结果吻合良好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号