首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
压入法获取材料单轴应力–应变关系和抗拉强度对服役结构完整性评价有重要的基础意义.假定材料均匀连续、各向同性、应力应变关系符合Hollomon律,基于能量等效假定,即代表性体积单元(representative volume element, RVE)的von Mises等效和有效变形域内能量中值等效假定,本文提出了关联材料载荷、深度、球压头直径和Hollomon律的四参数半解析球压入(semi-analytical spherical indentation, SSI)模型.通过球压入载荷–深度试验关系获得材料的应力–应变关系和抗拉强度.考虑压入过程中的损伤效应,针对金属材料提出了用于球压入测试的材料弹性模量修正模型.对11种延性金属材料完成了球压入试验,采用本文提出的球压入试验方法测到的弹性模量、应力–应变关系和抗拉强度与单轴拉伸试验结果吻合良好.  相似文献   

2.
针对超弹性材料压入问题,本文基于能量密度中值等效原理,提出了描述球、平面、锥3类压头独立压入下载荷、深度、压头几何尺寸和Mooney-Rivlin本构关系参数之间关系的半解析超弹性压入模型(semi-theoretical hyperelastic-material indentation model, SHIM),进而提出了球、平面、锥压入组合的双压试验方法 (indentation method due to dual indenters, IMDI).正向验证表明,基于系列超弹性材料的本构关系参数,由SHIM分别预测的球、平面、锥3类压入下的载荷-位移曲线与有限元分析(finite element analysis, FEA)结果之间密切吻合;反向验证表明,基于系列超弹性材料的FEA条件本构关系下3类压入的载荷-位移曲线,由双压试验方法预测的Mooney-Rivlin本构关系与FEA条件本构关系密切吻合.针对3种超弹性橡胶,完成了球、平面、锥压入试验,应用双压试验方法获得的3组Mooney-Rivlin本构关系均与单轴拉伸试验结果吻合良好.  相似文献   

3.
张希润  蔡力勋  陈辉 《力学学报》2020,52(3):787-796
针对超弹性材料压入问题, 本文基于能量密度中值等效原理, 提出了描述球、平面、锥3类压头独立压入下载荷、深度、压头几何尺寸和Mooney-Rivlin本构关系参数之间关系的半解析超弹性压入模型(semi-theoretical hyperelastic-material indentation model, SHIM), 进而提出了球、平面、锥压入组合的双压试验方法(indentation method due to dual indenters, IMDI). 正向验证表明, 基于系列超弹性材料的本构关系参数, 由SHIM分别预测的球、平面、锥3类压入下的载荷-位移曲线与有限元分析(finite element analysis, FEA)结果之间密切吻合; 反向验证表明, 基于系列超弹性材料的FEA条件本构关系下3类压入的载荷-位移曲线, 由双压试验方法预测的Mooney-Rivlin本构关系与FEA条件本构关系密切吻合. 针对3种超弹性橡胶, 完成了球、平面、锥压入试验, 应用双压试验方法获得的3组Mooney-Rivlin本构关系均与单轴拉伸试验结果吻合良好.   相似文献   

4.
本文针对9种金属材料完成了具有不同约束程度的10类试样的延性断裂试验, 获得了发生拉、压、扭和裂尖断裂等破坏形式构型试样的载荷-位移试验关系; 基于圆棒漏斗试样拉伸试验所得直至破坏的载荷-位移曲线, 采用有限元辅助试验(finite-element-analysis aided testing, FAT)方法得到了9种材料直至破坏的全程等效应力-应变曲线, 以此作为材料本构关系通过有限元分析获得了各类试样直至临界破坏的载荷-位移关系模拟. 载荷-位移关系模拟结果与试验结果有较好的一致性, 表明用于解决试样颈缩问题的FAT方法所获得的全程材料本构关系针对各向同性材料具有真实性和普适性. 对应9种材料、10类试样的36 个载荷-位移临界断裂点, 通过有限元分析获得了对应的材料临界断裂应力、应变与临界应力三轴度, 研究表明, 第一主应力在延性变形过程中为主控断裂的主导参量; 通过研究光滑、缺口、裂纹等构型试样的断裂状态, 提出了$-1$至3范围的应力三轴度下由第一主应力主控的统一塑性临界断裂准则.   相似文献   

5.
本文针对9种金属材料完成了具有不同约束程度的10类试样的延性断裂试验,获得了发生拉、压、扭和裂尖断裂等破坏形式构型试样的载荷-位移试验关系;基于圆棒漏斗试样拉伸试验所得直至破坏的载荷-位移曲线,采用有限元辅助试验(finite-element-analysis aided testing, FAT)方法得到了9种材料直至破坏的全程等效应力-应变曲线,以此作为材料本构关系通过有限元分析获得了各类试样直至临界破坏的载荷-位移关系模拟.载荷-位移关系模拟结果与试验结果有较好的一致性,表明用于解决试样颈缩问题的FAT方法所获得的全程材料本构关系针对各向同性材料具有真实性和普适性.对应9种材料、10类试样的36个载荷-位移临界断裂点,通过有限元分析获得了对应的材料临界断裂应力、应变与临界应力三轴度,研究表明,第一主应力在延性变形过程中为主控断裂的主导参量;通过研究光滑、缺口、裂纹等构型试样的断裂状态,提出了-1至3范围的应力三轴度下由第一主应力主控的统一塑性临界断裂准则.  相似文献   

6.
本文通过高温球压法得到各种脆性和准脆性材料的表面压痕应力与应变之间的关系曲线。通过压痕应力–应变曲线的分析既可比较方便地确定出材料的压痕弹性模量、剪切模量和布氏硬度,又可比较不同温度下水泥熟料的变形性能。在不同温度(25℃~1400℃)处理下,球压应力松弛试验载荷松弛,在载荷峰值为100 N时,随着温度的升高,水泥熟料载荷松弛更明显。随着温度从500℃升高到1400℃,载荷松弛非常明显,尤其温度高于1200℃,水泥熟料样品内部的硅酸三钙(Ca_3SiO_5,简称C3S)分解以及有部分液相的出现引起的应力松弛现象最为明显,在1275℃时熟料基本上已经软化,载荷急速松弛,所以认为1275℃为熟料的脆延转化温度。通过水泥熟料高温球压松弛试验可以确定水泥熟料在二次加热过程中的脆–延转化温度,测定熟料弹性模量和抗压强度急剧变化的温度范围。研究水泥熟料在不同温度下的力学行为和力学特性,探索提高粉磨效率的新途径,实现高温下的低能耗粉碎。  相似文献   

7.
为了能够在不停输油气工况下获得在役管道材料的弹塑性力学性能,提出了一种人工智能BP (backpropagation)神经网络、小冲杆试验与有限元模拟相结合,通过确定材料真应力-应变曲线从而获得材料弹塑性力学性能的方法.首先,通过系统改变Hollomon公式中的参数K, n值,获得457组具有不同弹塑性力学性能的假想材料本构关系,其次,将得到的本构关系代入经试验验证的含有Gurson-Tvergaard-Needleman(GTN)损伤参数的小冲杆试验二维轴对称有限元模型,通过有限元计算得到了与真应力-应变曲线一一对应的457条不同假想材料的载荷-位移曲线,最终将两组数据作为数据库输入BP神经网络进行训练,建立了同种材料小冲杆试验载荷-位移曲线与真应力-应变曲线之间的关联关系.通过此关联关系,可利用试验得到的小冲杆载荷-位移曲线获取在役管道钢的真应力-应变曲线,从而确定其弹塑性力学性能.通过对比BP神经网络得到的X80管道钢真应力-应变曲线与单轴拉伸试验的结果以及引用现有文献中不同材料的试验数据对此关系进行验证,证明了该方法的准确性与广泛适用性.  相似文献   

8.
为了能够在不停输油气工况下获得在役管道材料的弹塑性力学性能, 提出了一种人工智能BP (back-propagation)神经网络、小冲杆试验与有限元模拟相结合,通过确定材料真应力-应变曲线从而获得材料弹塑性力学性能的方法. 首先,通过系统改变Hollomon公式中的参数$K$, $n$值,获得457组具有不同弹塑性力学性能的假想材料本构关系, 其次,将得到的本构关系代入经试验验证的含有Gurson-Tvergaard-Needleman(GTN)损伤参数的小冲杆试验二维轴对称有限元模型,通过有限元计算得到了与真应力-应变曲线一一对应的457条不同假想材料的载荷-位移曲线,最终将两组数据作为数据库输入BP神经网络进行训练,建立了同种材料小冲杆试验载荷-位移曲线与真应力-应变曲线之间的关联关系.通过此关联关系,可利用试验得到的小冲杆载荷-位移曲线获取在役管道钢的真应力-应变曲线,从而确定其弹塑性力学性能.通过对比BP神经网络得到的X80管道钢真应力-应变曲线与单轴拉伸试验的结果以及引用现有文献中不同材料的试验数据对此关系进行验证,证明了该方法的准确性与广泛适用性.   相似文献   

9.
含水合物沉积物三轴剪切试验与损伤统计分析   总被引:1,自引:0,他引:1  
天然气水合物开采诱发水合物分解,削弱水合物地层强度,可能导致地层滑动和生产平台倒塌等工程地质灾害,对水合物开采安全性构成严重威胁.深入理解含水合物沉积物力学性质并建立合理的本构关系模型是水合物开采安全性评价的前提条件.在自主研发的含水合物沉积物力学性质测试实验装置上,采用饱和水海砂沉积物气体扩散法制备了含水合物沉积物样品,并开展了系列的排水三轴剪切试验,通过时域反射技术实现了样品中水合物饱和度的实时在线测量;基于复合材料的罗伊斯(Reuss)应力串联模型和沃伊特(Voigt)应变并联模型提出了含水合物沉积物等效弹性模量的细观力学混合律模型,结合损伤统计理论和摩尔-库伦破坏准则改进了含水合物沉积物的本构关系模型.结果表明:随着水合物饱和度的增加和有效围压的减小,应力-应变曲线由应变硬化型变为应变软化型,割线模量和峰值强度均随水合物饱和度与有效围压的增加而提高,黏聚力受水合物饱和度影响明显,而内摩擦角基本不变;提出的等效弹性模量细观力学混合律模型与改进的本构关系模型均具有良好的适用性,模型参数少且物理意义明确.   相似文献   

10.
阚晋  王建祥 《力学学报》2012,44(6):1066-1070
基于细观力学和断裂力学的基本理论提出一个新的分析模型, 对孔隙介质的力学性能进行了分析. 依据孔隙介质内部孔隙的几何描述和状态参数,如孔隙率、形状、尺度及分布等,通过等效夹杂理论获得孔隙介质的等效本构方程,其最终变量为应力、应变和孔隙的形态参数. 根据断裂理论中材料承受载荷作用下破坏增长过程中的能量守恒,对孔隙介质变形过程中机械能、弹性应变能和载荷提供的势能进行分析, 根据能量守恒定律建立能量守恒方程,其最终变量也为应力、应变和孔隙的形态参数. 根据等效本构方程和能量守恒方程,获得孔隙介质承受载荷作用下的应力应变关系. 最后将该力学模型应用于水泥基材料,计算水泥基材料的力学性能并与文献中的结果进行对比分析,结果显示模型的计算结果准确有效.   相似文献   

11.
Two expanding cavity models (ECMs) are developed for describing indentation deformations of elastic power-law hardening and elastic linear-hardening materials. The derivations are based on two elastic–plastic solutions for internally pressurized thick-walled spherical shells of strain-hardening materials. Closed-form formulas are provided for both conical and spherical indentations, which explicitly show that for a given indenter geometry indentation hardness depends on Young’s modulus, yield stress and strain-hardening index of the indented material. The two new models reduce to Johnson’s ECM for elastic-perfectly plastic materials when the strain-hardening effect is not considered. The sample numerical results obtained using the two newly developed models reveal that the indentation hardness increases with the Young’s modulus and strain-hardening level of the indented material. For conical indentations the values of the indentation hardness are found to depend on the sharpness of the indenter: the sharper the indenter, the larger the hardness. For spherical indentations it is shown that the hardness is significantly affected by the strain-hardening level when the indented material is stiff (i.e., with a large ratio of Young’s modulus to yield stress) and/or the indentation depth is large. When the indentation depth is small such that little or no plastic deformation is induced by the spherical indenter, the hardness appears to be independent of the strain-hardening level. These predicted trends for spherical indentations are in fairly good agreement with the recent finite element results of Park and Pharr.  相似文献   

12.
An expanding cavity model (ECM) for determining indentation hardness of elastic strain-hardening plastic materials is developed. The derivation is based on a strain gradient plasticity solution for an internally pressurized thick-walled spherical shell of an elastic power-law hardening material. Closed-form formulas are provided for both conical and spherical indentations. The indentation radius enters these formulas with its own dimensional identity, unlike that in classical plasticity based ECMs where indentation geometrical parameters appear only in non-dimensional forms. As a result, the newly developed ECM can capture the indentation size effect. The formulas explicitly show that indentation hardness depends on Young’s modulus, yield stress, strain-hardening exponent and strain gradient coefficient of the indented material as well as on the geometry of the indenter. The new model reduces to existing classical plasticity based ECMs (including Johnson’s ECM for elastic–perfectly plastic materials) when the strain gradient effect is not considered. The numerical results obtained using the newly developed model reveal that the hardness is indeed indentation size dependent when the indentation radius is very small: the smaller the indentation, the larger the hardness. Also, the indentation hardness is seen to increase with the Young’s modulus and strain-hardening level of the indented material for both conical and spherical indentations. The strain-hardening effect on the hardness is observed to be significant for materials having strong strain-hardening characteristics. In addition, it is found that the indentation hardness increases with decreasing cone angle of the conical indenter or decreasing radius of the spherical indenter. These trends agree with existing experimental observations and model predictions.  相似文献   

13.
Instrumented indentation is a popular technique for determining mechanical properties of materials. Currently, the evaluation techniques of instrumented indentation are mostly limited to a flat substrate being indented by various shaped indenters (e.g., conical or spherical). This work investigates the possibility of extending instrumented indentation to non-flat surfaces. To this end, conical indentation of a sphere is investigated where two methodologies for establishing mechanical properties are explored. In the first approach, a semi-analytical approach is employed to determine the elastic modulus of the sphere utilizing the elastic unloading response (the “unloading slope”). In the second method, reverse analysis based on finite element analysis is used, where non-dimensional characteristic functions derived from the force–displacement response are utilized to determine the elastic modulus and yield strength. To investigate the accuracies of the proposed methodologies, selected numerical experiments have been performed and excellent agreement was obtained.  相似文献   

14.
A method for deducing the stress–strain uniaxial properties of metallic materials from instrumented spherical indentation is presented along with an experimental verification.An extensive finite element parametric analysis of the spherical indentation was performed in order to generate a database of load vs. depth of penetration curves for classes of materials selected in order to represent the metals commonly employed in structural applications. The stress–strain curves of the materials were represented with three parameters: the Young modulus for the elastic regime, the stress of proportionality limit and the strain-hardening coefficient for the elastic–plastic regime.The indentation curves simulated by the finite element analyses were fitted in order to obtain a continuous function which can produce accurate load vs. depth curves for any combination of the constitutive elastic–plastic parameters. On the basis of this continuous function, an optimization algorithm was then employed to deduce the material elastic–plastic parameters and the related stress–strain curve when the measured load vs. depth curve is available by an instrumented spherical indentation test.The proposed method was verified by comparing the predicted stress–strain curves with those directly measured for several metallic alloys having different mechanical properties.This result confirms the possibility to deduce the complete stress–strain curve of a metal alloy with good accuracy by a properly conducted instrumented spherical indentation test and a suitable interpretation technique of the measured quantities.  相似文献   

15.
Knowledge of the relationship between the penetration depth and the contact radius is required in order to determine the mechanical properties of a material starting from an instrumented indentation test. The aim of this work is to propose a new penetration depth–contact radius relationship valid for most metals which are deformed plastically by parabolic and spherical indenters. Numerical simulation results of the indentation of an elastic–plastic half-space by a frictionless rigid paraboloïd of revolution show that the contact radius–indentation depth relationship can be represented by a power law, which depends on the reduced Young’s modulus of the contact, on the strain hardening exponent and on the yield stress of the indented material. In order to use the proposed formulation for experimental spherical indentations, adaptation of the model is performed in the case of a rigid spherical indenter. Compared to the previous formulations, the model proposed in the present study for spherical indentation has the advantage of being accurate in the plastic regime for a large range of contact radii and for materials of well-developed yield stress. Lastly, a simple criterion, depending on the material mechanical properties, is proposed in order to know when piling-up appears for the spherical indentation.  相似文献   

16.
In recent years, indentation tests have been proven very useful in probing mechanical properties of small volumes of materials. However, a class of materials that very little has been done in this direction is rubber-like materials (elastomers). The present work investigates the spherical indentation of incompressible rubber-like materials. The analysis is performed in the context of second-order hyperelasticity and is accompanied by finite element computations and an extensive experimental program with spherical indentors of different radii. Uniaxial tensile tests were also performed and it was found that the initial elastic modulus correlates well with the indentation response. The experiments suggest stiffer indentation response than that predicted by linear elasticity, which is somehow counter-intuitive, if the uniaxial material response is to be considered. Regarding the uniqueness of the inverse problem, that is to establish material properties from spherical indentation tests, the answer is disappointing. We prove that the inverse problem does not give unique answer regarding the constitutive relation, except for the initial stiffness.  相似文献   

17.
The analytical stress-strain relation with heterogeneous parameters is derived for theheterogeneous brittle materials under a uniaxial extensional load, in which the distributions of theelastic modulus and the failure strength are assumed to be statistically independent. This theoreticalsolution gives an approximate estimate of the equivalent stress-strain relations for 3-D heterogeneousmaterials. In one-dimensional cases it may provide comparatively accurate results. The theoreticalsolution can help us to explain how the heterogeneity influences the mechanical behaviors, Further, anumerical approach is developed to model the non-linear behavior of three-dimensional heterogeneousbrittle materials. The lattice approach and statistical techniques are applied to simulate the initialheterogeneity of heterogeneous materials. The load increment in each loading stage is adaptivelydetermined so that the better approximation of the failure process can be realized. When the maximumtensile principal strain exceeds the failure strain, the elements are considered to be broken, which canbe carried out by replacing its Young‘s modulus with a very small value. A 3-D heterogeneous brittlematerial specimen is simulated during a full failure process. The numerical results are in good agreementwith the analytical solutions and experimental data.  相似文献   

18.
An experimental method is described which can measure the direction and magnitude of residual and applied stress in metals. The method uses optical interference to measure the permanent surface deformation around a shallow spherical indentation in a polished area on the metal specimen. The deviation from circularly symmetrical surface deformations is measured at known values of applied stress in calibration specimens. This deviation from symmetry can then be used to determine the direction and magnitude of tensile residual stress in specimens of the same material. Determination of compressive residual stress is more limited. A model of the indentation process is offered which qualitatively describes experimental results in 4340 steel for both tensile and compressive stress. The model assumes that the deformation around an indentation os controlled by stresses analogous to those around a hole in an elastic plate. Various conditions are discussed which affect the indentation process and its use to measure stress, including (a) the rigidity of support of the indentor and specimen, (b) the size and depth of the indentation, (c) the uniaxial stress-strain behavior of the specimen material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号