首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Ni-P-纳米金刚石黑粉化学复合镀层的摩擦磨损性能   总被引:2,自引:0,他引:2  
通过非均匀形核法,在纳米金刚石黑粉颗粒表面包覆一层Al2O3,采用包覆后颗粒制备了Ni-P-纳米金刚石黑粉化学复合镀层.通过沉降法分析了包覆前后纳米颗粒悬浮液的分散稳定性;研究了金刚石质量浓度、搅拌转速及粉体热处理工艺对复合镀层显微硬度和耐磨性能的影响;利用SEM和EDS分析了镀层微观形貌和组分.结果表明:颗粒表面包覆氧化铝可以显著提高其在分散介质中的悬浮稳定性;综合考虑摩擦磨损特性,其最优工艺参数为金刚石质量浓度4 g/L,搅拌转速500 r/min,复合粉体经100℃下热处理4h;与Ni-P镀层相比,复合镀层摩擦系数降低58%,耐磨性能提高59%.  相似文献   

2.
分子动力学模拟是研究纳米流体的黏度特性的重要手段,但计算量庞大.文章通过对基液水分子粗粒化,使得计算量大幅度减小,且计算精度与全原子模拟相当.基于平衡态分子动力学,模拟研究了Cu-H2O纳米体系的微观运动特性,通过格林-库博(Green--Kubo)公式对Cu-H2O纳米流体的黏度进行了模拟计算,并考察了温度、体积分数、粒径和颗粒形状对于Cu-H2O纳米流体黏度的影响,对已有的悬浮液黏度经验公式进行了修正.  相似文献   

3.
采用粉末冶金技术制备了纳米SiC陶瓷颗粒(0.0%、1.0%、2.2%和3.4%,质量分数,后面未作特殊说明,均为质量分数)强化的CoCrMo基高温抗磨复合材料,对复合材料的相组成及高温摩擦学性能进行了系统性研究. 在室温至1 000 ℃范围内利用球-盘式高温摩擦试验机测试了材料的高温摩擦学性能. 结果表明:复合材料的基体主要由γ (fcc)和ε (hcp)合金相构成,加入纳米SiC后复合材料出现了MoCr相,这有利于复合材料硬度的提高;纳米SiC提高了复合材料的硬度,同时降低了复合材料的密度;摩擦系数与纳米SiC的含量和温度相关,摩擦系数随纳米SiC含量的增加而增大,室温至800 ℃的摩擦系数整体呈下降趋势,1 000 ℃时含2.2%和3.4% SiC的复合材料具有较低的摩擦系数;高温环境下复合材料的抗磨损性能随纳米SiC含量的增加而显著提高;复合材料的磨损机理在不同温度下存在差异,随着温度升高,磨损机理逐渐由磨粒磨损和塑性变形转变为氧化磨损. 室温至1 000 ℃范围内CoCrMo-2.2% SiC具有较优异的高温抗磨损性能,这主要归因于复合材料的高硬度和磨损表面完整的氧化物润滑层.   相似文献   

4.
通过化学还原法制备出不同粒径的纳米金颗粒。利用紫外可见分光光度计和透射电子显微镜对纳米金颗粒的形貌及尺寸进行表征。讨论了还原剂种类、还原剂用量、试剂加入顺序、反应温度等因素对纳米金颗粒稳定性、粒径、形貌和分散性的影响。结果表明:Na3C6H5O7为还原剂制得纳米金颗粒粒径在15-20 nm之间,NaBH4为还原剂制得的纳米金颗粒粒径在3-10nm之间,柠檬酸钠与氯金酸的摩尔比为1.5:1时最佳,Na3C6H5O7为还原剂时,采用HAuCl4溶液加入到加热的Na3C6H5O7与聚乙烯吡咯烷酮(PVP)混合溶液比Na3C6H5O7溶液加入到加热的HAuCl4与PVP混合溶液制得的纳米金溶胶的颗粒分散性好,粒径小且更均一。  相似文献   

5.
电沉积Ni-La2O3纳米复合镀层的摩擦磨损性能   总被引:8,自引:4,他引:8  
用复合电沉积方法制备了Ni-La2O3纳米复合镀层,研究了La2O3纳米颗粒含量对纳米复合镀层摩擦磨损性能的影响,并用扫描电子显微镜分析了其磨损机理.结果表明,在干摩擦条件下,随着La2O3纳米颗粒含量的增加,纳米复合镀层的摩擦系数降低,耐磨性能提高;La2O3质量分数为3.1%的纳米复合镀层的摩擦系数最低,耐磨性能最佳;纯Ni镀层呈现严重的粘着磨损特征,而纳米复合镀层主要呈现轻微磨粒磨损特征.  相似文献   

6.
水溶性纳米铜的制备及其摩擦学性能研究   总被引:1,自引:0,他引:1  
以氨基功能化羟基硅酸镁为修饰剂,采用原位表面修饰方法制备了水溶性Cu纳米微粒.利用透射电子显微镜观察了水溶性Cu纳米微粒的形貌,利用导热系数测定仪测定了水溶性纳米Cu分散液的导热系数,并通过SRV往复摩擦磨损试验机(球-盘接触方式)考察了水溶性Cu纳米微粒作为水基添加剂的摩擦学性能.结果表明:水溶性纳米Cu微粒作为水基添加剂能够显著减小钢-钢摩擦副的摩擦系数和磨损率,提高纯水的承载能力;在合适的浓度下,水溶性纳米Cu微粒可使纯水导热系数提高近10%.  相似文献   

7.
徐波  康国政 《力学学报》2021,53(3):802-812
通过建立考虑两个马氏体变体的二维相场模型,对梯度纳米晶镍钛(NiTi)合金系统的超弹性、单程和应力辅助双程形状记忆过程进行了模拟和预测.模拟结果显示: 在梯度纳米晶NiTi合金的超弹性过程中,较粗晶粒的区域保留了传统粗晶的马氏体相变和逆相变特征,即局部马氏体带的形核-扩展和缩减-消失, 而随着晶粒尺寸的减小,细晶粒区域表现为均匀相变的特点, 即无局部马氏体带产生; 此外,在超弹性和形状记忆过程中,马氏体相变和重取向都首先在较粗晶粒区域开始并逐步向细晶粒区域传播,而逆相变则相反.马氏体相变和重取向的逐步扩展使梯度纳米晶NiTi合金的应力-应变和应变-温度曲线呈现出“硬化状”,其可归因于纳米多晶NiTi合金中马氏体相变对晶粒尺寸的依赖性,即随着晶粒尺寸的减小, 相变或重取向壁垒逐渐增大,马氏体相变或重取向的形核、扩展越来越困难. 可见,梯度纳米晶结构具有比传统均匀晶粒尺寸NiTi合金更宽的相变应力区间、重取向应力区间和相变温度区间,可显著提高该合金非弹性变形的可控性.   相似文献   

8.
使用碳化法制备出三种具有不同粒径的纳米碳酸钙颗粒,利用透射电镜(TEM)和X射线衍射仪(XRD)对其形貌及结构组成进行表征.通过UMT-2摩擦学试验机及RS6000流变仪分别考察了纳米颗粒作为润滑脂添加剂的摩擦学性能及流变学行为,并通过X射线多功能电子能谱仪(XPS)对磨斑表面进行分析.结果表明:所制备的三种纳米颗粒均为方解石结构,可以显著提高基础脂的减摩抗磨性能;添加剂浓度及添加剂尺寸均会影响润滑脂最终的摩擦学性能;在最佳添加浓度和尺寸条件下,能够同时获得最佳的抗磨减摩性能;过高的添加剂浓度会影响润滑脂的结构稳定性,进而影响其摩擦学性能;三种纳米添加剂在磨斑表面形成以碳酸钙为主要成分的润滑膜,纳米颗粒物理性质的差异可能导致其摩擦学性能的差异.  相似文献   

9.
纤维与基体的粘合强度是决定纤维增强高分子复合材料性能的关键因素.本文采用横向纤维束拉伸实验的方法研究了碳纤维与经过纳米颗粒改性的环氧树脂基体间的粘合强度.平均直径为25纳米的二氧化硅纳米颗粒用特殊的溶胶-凝胶法引入环氧基体(由Hanse Chemie AG提供),可以达到很高的含量,同时保持较为理想的分散状态.实验结果表明,二氧化硅纳米颗粒对于碳纤维与改性环氧基体的粘合强度有显著的增强效应.当纳米颗粒含量为14 vol.%时,横向纤维束拉伸的断裂强度相比纯环氧基体提高了104%.通过对横向纤维束拉伸样品断裂面的扫描电镜观察,以及二氧化硅纳米颗粒改性环氧树脂基体材料的力学性质的测量,可以发现横向纤维束拉伸的断裂强度与改性环氧基体本身的断裂韧性之间存在良好的相关性.由此可推测纳米颗粒对环氧树脂基体材料的增韧是碳纤维与基体间界面增强的一个重要原因.  相似文献   

10.
NbSe2纳米材料的合成及减摩性能研究   总被引:1,自引:1,他引:0  
将Se粉和Nb粉按一定的比例混合,然后密封在石英管中或压成片状后密封于石英管中,加热到一定温度,分别获得了NbSe2纳米纤维和NbSe2纳米颗粒.采用X射线衍射仪(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)对所得产物进行了表征,分析了其微观形貌;采用MS-T3000摩擦磨损试验机测定了纳米颗粒作为基础润滑油N40添加剂的摩擦学性能.结果表明,制备的纳米纤维直径100~200nm,纳米颗粒直径40~300nm,二者都具有层状结构和良好的结晶性;NbSe2纳米颗粒作为润滑油添加剂具有明显优于基础润滑油的极压减摩性能;同纳米纤维相比,纳米颗粒的减摩性能较好.  相似文献   

11.
The adsorption of nano-particles on bubble surface is discussed for saturated boiling on thin wire of nano-particle suspensions. Owing to the decrease of surface tension for suspensions, the nano-particles tend to adsorb on the bubble surface to decrease the Gibbs free energy for stability, and meanwhile the velocity of nano-particles would be smaller than that of bubble growth. The long-range van der Waals force existing between “water particles” and nano-particles is considered the attractive force between the nano-particles and the bubble surface. Thus, the nano-particles would attach on the bubble surface if the particle-surface distance is smaller than its critical value. The distribution of nano-particles on the bubble surface and in the adjacent region is also investigated.  相似文献   

12.
The effect of polyethyleneimine (PEI) concentration on the properties of titanium dioxide (TiO2) suspensions is studied with or without the addition of an electrolyte (barium acetate). Measurements of the apparent viscosity and the stability of TiO2 suspensions showed that PEI is an effective dispersant for TiO2 particles in suspension in the absence of an electrolyte, not only reducing the viscosity of the suspension but also increasing its stability. In the presence of an electrolyte, however, small quantities of polyethyleneimine could neither disperse the TiO2 particles nor de-crease the viscosity of the TiO2 suspensions; only PEI concentrations beyond saturation adsorption could perceptively improve the stabilitv of TiO2 suspensions.  相似文献   

13.
We present data and predictive models for the shear rheology of suspended zeolite particles in polymer solutions. It was found experimentally that suspensions of zeolite particles in polymer solutions have relative viscosities that dramatically exceed the Krieger–Dougherty predictions for hard sphere suspensions. Our investigations show that the major origin of this discrepancy is due to the selective absorption of solvent molecules from the suspending polymer solution into zeolite pores. The effect raises both the polymer concentration in the suspending medium and the particle volume fraction in the suspension. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are increased. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating a solvent absorption parameter, α, into the Krieger–Dougherty model. We experimentally determined the solvent absorption parameter by comparing viscosity data for suspensions of porous and nonporous MFI zeolite particles. Our results are in good agreement with the theoretical pore volume of MFI particles.  相似文献   

14.
The rheology of dispersions of polypyrrole (PPY) nanoparticles (nPPY) is compared to that of micron-sized PPY particles (CPPY), each suspended in aqueous sodium alginate. With increasing PPY volume fraction, the Newtonian viscosity of the CPPY/alginate suspensions exhibits a ??normal?? increase, whereas that of the nPPY/alginate suspensions decreases to a minimum and then increases again. Enhanced elasticity, indicative of agglomerate formation via bridging interactions with the alginate, is observed only in the CPPY rheology. By comparing doped versus dedoped nPPY particles, and investigating the effect of nPPY particle size, we conclude that the negative viscosity change of the nPPY dispersions is due to adsorption of a dense layer of alginate, resulting in a decrease in bulk alginate concentration. The viscosity upturn at higher nPPY volume fractions indicates the onset of particle agglomeration via bridging interactions with alginate. The results demonstrate improved dispersability of both doped and dedoped nPPY over CPPY particles.  相似文献   

15.
Summary The steady shear flow properties of suspensions of vinylon fibers in silicone oil were measured by means of a cone-plate type rheometer. Three kinds of vinylon fibers used had no distributions of length and were more flexible than glass fibers and the like. The content of the fibers ranged from 0 to 7 wt.%. Shear viscosity, the first normal-stress difference, yield stress, and relative viscosity were discussed. Shear viscosity and relative viscosity increased with the fiber concentration and the aspect ratio, and depended upon the shear rate. The applicability of Ziegel's equation of viscosity for fiber suspensions was investigated. The first normal-stress difference increased with the fiber concentration, aspect ratio, and shear rate and its relative increase was much larger than for shear stress and viscosity depending on the properties of the characteristic time, The yield stress could be determined by Casson plots for large aspect ratio fiber suspensions even in low concentration comparing with the suspensions of spherical particles or powder. The influence of the flexibility of the fibers for the rheological properties of the fiber suspensions can not be ignored.With 12 figures and 2 tables  相似文献   

16.
The rheology and microstructure of two different cellulose nanocrystals (CNC) samples possessing different degrees of sulfation are studied over a broad concentration range of 1 to 15 wt%. CNC suspensions are isotropic at low concentration and experience two different transitions as concentration increases. First, they form chiral nematic liquid crystals above a first critical concentration where the samples exhibit a fingerprint texture and the viscosity profile shows a three-region behavior, typical of liquid crystals. By further increasing the concentration, CNC suspensions form gels above a second critical concentration, where the viscosity profile shows a single shear-thinning behavior over the whole range of shear rates investigated. It has been found that the degree of sulfation of CNC particles has a significant effect on the critical concentrations at which transitions from isotropic to liquid crystal and liquid crystal to gel occur. Rheological properties and microstructure of these suspensions have been studied using polarized optical microscopy combined with rheometry.  相似文献   

17.
In this work, we describe methods for the preparation of suspensions of micron-sized iron particles grafted with different surfactants. The aim is to obtain well-dispersed magnetorheological (MR) fluids. The effectiveness of the surfactants as dispersants was analyzed quantitatively by means of rheological measurements. With this objective, the viscosity of the suspensions was measured, and the results were compared with the prediction of the Batchelor’s formula (Batchelor, J Fluid Mech 83:97–117, 1977). The effect of dispersion on the MR properties of the suspensions was also studied. It was found that the quality of the dispersion of a suspension does not have an important effect on the magnitude of the field-induced yield stress but does on the change of viscosity induced by the field. It was also found that the transition from the solid-like state to the liquid-like one happens very smoothly for well-dispersed suspensions, contrarily to the abrupt transition for poorly dispersed suspensions.  相似文献   

18.
A filament-stretching rheometer is used to measure the extensional viscosity of a shear-thickening suspension of cornstarch in water. The experiments are performed at a concentration of 55 wt.%. The shear rheology of these suspensions demonstrates a strong shear-thickening behavior. The extensional rheology of the suspensions demonstrates a Newtonian response at low extension rates. At moderate strain rates, the fluid strain hardens. The speed of the strain hardening and the extensional viscosity achieved increase quickly with increasing extension rate. Above a critical extension rate, the extensional viscosity goes through a maximum and the fluid filaments fail through a brittle fracture at a constant tensile stress. The glassy response of the suspension is likely the result of jamming of particles or clusters of particles at these high extension rates. This same mechanism is responsible for the shear thickening of these suspensions. In capillary breakup extensional rheometry, measurement of these suspensions demonstrates a divergence in the extensional viscosity as the fluid stops draining after a modest strain is accumulated.  相似文献   

19.
The paper describes how the theology of low concentration brown coal suspensions can be exploited to produce high concentration, low viscosity suspensions which are attractive as a potential coal-water fuel. Brown coal suspensions with solid concentrations approaching those of bituminous black coal have been prepared. The high inherent water content ( 60 wt %) and macroporosity of the brown coal have been reduced by thermal and chemical means. The hydrophobicity of the coal surface has been increased sufficiently to reduce the tendency for swelling and water uptake. This, together with densification, has allowed the solids content to be progressively improved from 30 wt % solids with raw coal to 65 wt% solids with modified coals while maintaining the viscosity of the suspension at a low level. The high solid concentration was achieved without additives.  相似文献   

20.
The dynamic mechanical behavior of suspensions of wood flour in polypropylene (PP) melts was investigated at varying filler concentrations. The main observed features were related to the viscoelastic nature of the polymer and to the filler aggregation, where the process of formation and destruction of particle clusters is governed by the polymer chain dynamics. The effect of the wood flour particles at low and large deformations was analyzed. The sample containing a wood flour concentration of 50% (by weight) showed a solid like behavior at low frequencies and was identified as the sample closer to a liquid-solid transition (LST). The values of the Newtonian viscosity obtained from sinusoidal oscillations at low frequencies were related to the concentration of filler in the suspensions. Moreover, a filler concentration scaling was found, that allows to obtain a master curve using the neat polymer as the reference and from which it is possible to calculate the dynamic mechanical behavior of all the suspensions. Apparently, for this system, the relaxation mechanisms of the neat polymer are not changed by the presence of the filler. However, the corresponding relaxation times are increased as a function of the filler concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号