首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A structural health assessment (SHA) methodology is developed using data acquired from structural health monitoring (SHM) system installed on long-span bridges. A set of fatigue criteria has been proposed for pre-determining the global state of the bridge structure failure due to fatigue. This involves finding the threshold of fatigue initiation, below which the rate of fatigue damage may be undetectable under current technology or it is economically unfeasible. The state-of-art for large structures corresponds to the initiation of macro-cracks caused by the accumulation of damage generated by actual service loads for the case of bridges. In what follows, consideration is given to developing fatigue crack growth criterion based on the concept of the continuum damage mechanics (CDM). Fatigue accumulative is included in the model where a fatigue limit for multi-axial stress state is considered. The proposed criterion advocates the evolution of micro-crack growth up to the stage of macro-crack formulation. Considered are the loading histories that correspond to normal traffic loading for highways and railways, incidental or accident loadings such as those caused by typhoons and effective environmental loadings. The potential sites of damage are determined are discussed. The proposed criterion is applied to analyze the fatigue damage of the Tsing Ma Bridge with online strain history data acquired by the SHM system that is permanently installed in the bridge.  相似文献   

2.
Early fatigue damage is assumed to correspond to the build-up of local plastic shear strain. The influence of strain-hardening and grain size on the early stage of fatigue damage of a polycrystal subjected to fluctuating stress is considered. The calculations are based on a micromechanics theory proposed recently by the authors. It is shown that the increase of the strain-hardening rate and/or the decrease of the grain size decreases the rate of early fatigue damage. In order to produce 100 per cent local plastic shear strain for a given number of loading cycles, the range of the alternating stress decreases with increasing amounts of mean stress. This result is shown to be rather insensitive to the rate of strain-hardening and is found to lie between the values predicted by Gerber's parabolic law and by the modified Goodman linear law for fatigue failure.  相似文献   

3.
传统的正交异性钢桥面板疲劳损伤评估常采用确定性和可靠性分析方法,忽略了疲劳裂纹扩展的随机性影响,针对这一问题,提出钢桥面板细节疲劳随机扩展分析方法。本文以南溪长江大桥为工程背景,基于长期车辆荷载监测数据,建立了车辆荷载非齐次复合Poisson过程模型。建立钢桥面板有限元模型,采用瞬态分析方法将随机车辆荷载转化成细节疲劳应力,基于线弹性断裂力学理论推导U肋-顶板焊接细节疲劳裂纹扩展时变微分方程,实现宏观关系式疲劳应力幅次数-疲劳损伤至微观表达式应力时间序列-疲劳损伤转换,讨论了车载次序及超载对疲劳裂纹扩展的影响。研究结果表明,非齐次复合泊松过程模型能够较好描述随机车流运营状态,车辆荷载的次序对疲劳裂纹扩展速率的影响不可忽略,重车排序靠前时能够促使疲劳裂纹扩展增速,南溪长江大桥细节点的车辆超载迟滞效应修正系数取值0.804。  相似文献   

4.
Empirical relations for describing constant-amplitude crack-growth behavior are reviewed. The effect of stress ratio (mean stress) on crack growth is illustrated through the use of plots analogous to constant-lifetime fatigue diagrams. Experimentally observed load-sequence effects, such as crack retardation due to tensile overloads, acceleration due to compressive overloads, the interaction between tensile and compressive overloads, etc. are summarized. The crack-closure phenomenon is reviewed, since it seems to provide a plausible physical explanation for many sequence effects. Methods of predicting crack growth under variable-amplitude loading (including irregular loadings representative of actual service) are reviewed and some of their limitations noted.  相似文献   

5.
A new equivalent stress amplitude expression has been developed for the assessment of fatigue life in components under multiaxial loading. The expression was generated by incorporating non-linear/plastic stress–strain relation into a mechanical energy calculation, and then applying the calculation to the distortion energy theory for a cyclic loading case. Therefore, the new uniaxial equivalent stress expression determines an appropriate stress amplitude value for multiaxial cyclic loading. The purpose of the equivalent stress value is to determine multiaxial fatigue failure using an energy-based fatigue life prediction criterion. The governing understanding behind the criterion states that the physical damage quantity for failure is equal to the accumulated strain energy in a monotonic fracture, which is also equal to the accumulated strain energy during fatigue failure. Using the new equivalent stress amplitude expression and the energy-based life prediction method, a comparison is made between prediction results and multiaxial empirical data. The multiaxial data was acquired by a vibration-based biaxial bending fatigue test and a torsion fatigue test with an assumed axial misalignment. The results of the comparison provide encouragement regarding the capability of the newly developed equivalent stress amplitude expression for fatigue life prediction.  相似文献   

6.
An event independent cumulative damage (EVICD) fatigue prediction model was previously developed for the fatigue damage prediction under general multiaxial stress state and loading conditions. The model takes the plastic strain energy as the major contributor to the fatigue damage. The application of the EVICD model does not require a cycle counting method for general random loading. In the current effort, derivations were made to explicitly and directly relate the material constants in the fatigue model to the parameters in the Manson–Coffin equations and the cyclic stress–strain curve of the material. In addition, an advanced cyclic plasticity theory was implemented for the determination of the detailed stress–strain response that was required as the input for the EVICD fatigue model. Three metallic materials were used to demonstrate the capability of the modified fatigue model for the predictions of fatigue lives under different loading conditions. The results show that the fatigue model can provide fatigue life predictions in close agreement with the experimental observations.  相似文献   

7.
The behavior of crack growth for the fatigue damage accumulation near tip where damage is most severe is analyzed. Fatigue life is assessed for the welded members of bridges under traffic loading. Two parts are considered. They consist of the development of a fatigue damage accumulation model for welded bridge members and a method for calculating the stress intensity factor that is needed for evaluating the fatigue life of welded bridge members with cracks. Based on the concept of continuum damage accumulation and fatigue and fatigue crack growth relations, results are obtained to describe the relationship between the cracking count rate and the effective stress intensity factor. Crack growth and fatigue life are found for two types of welded members assisted by using fatigue experimental results. The stress intensity factors are modified by correcting for the geometric shape of the welded members in order to reflect the influence of the weldment and geometry. This is accomplished via the stress intensity factor. The calculated and measured fatigue lives were generally in good agreement for the initial cracking conditions of two types of welded members widely used in steel bridges.  相似文献   

8.
建立了预估谐振载荷作用下结构振动疲劳寿命的损伤力学-有限元方法。首先根据损伤热力学原理,构建了损伤演化方程,建立光滑试件在恒幅应变交变载荷作用下寿命预估方法;进一步由损伤力学守恒积分原理,得到恒幅重复载荷作用下应力与寿命的关系式;然后根据标准件疲劳试验结果,拟合得到损伤演化方程中的材质参数;最后利用APDL语言编程对ANSYS软件进行了二次开发,借助ANSYS软件对谐振载荷作用下结构振动疲劳裂纹萌生寿命进行预估。作为算例,本文利用该方法预估了LC9CgS1铝合金梁谐振载荷作用下疲劳裂纹萌生寿命。  相似文献   

9.
焊接结构长寿命区疲劳累积损伤的概率模型   总被引:3,自引:0,他引:3  
根据焊接结构在各种随机谱载荷下长寿命区疲劳试验的有关资料,对变幅载荷下焊接结构在长寿命区疲劳累积损伤的分布规律进行了统计分析,根据长寿命区疲劳高度离散性的特点,提出了一种变标准差的概率设计模型。  相似文献   

10.
This article presents an elastic-plastic study aiming at predicting the fatigue crack growth (FCG) of 2024-T3 aluminum alloys under variable-amplitude loading. The proposed analysis needs the estimation of the residual stress distribution ahead of the crack tip during propagation. An elastic-plastic FE analysis has been implemented for modeling FCG using Chaboche's model. The FE study has been carried out through consideration of the loading history effect using the memory rules. Three different loading spectra have been applied in this work. The obtained results have been compared to the experimental ones and it has been proved that the suggested model has a better prediction of the FCG lives of cracked 2024-T3 aluminum alloy structures subjected to variable-amplitude loading.  相似文献   

11.
The effects of the transverse strain (the normal strain in the crack-line direction) on the near-tip fields of small shallow surface cracks (Case A cracks) in power-law hardening materials are investigated by finite element analyses. The small Case A cracks are under plane stress, general yielding, and mixed mode I and II conditions. Constant effective stress contours representing the intense straining zones near the tip, deformed crack-tip profiles and near-tip mode mixity factors are presented for different transverse strains in the crack-line direction. Based on the concept of characterization of fatigue crack growth by the cyclic J-integral, the effects of the transverse strain on J are investigated. The results suggest that the fatigue life prediction based on multiaxial fatigue theories and the critical plane approach should include the constraint effects due to the transverse strain. Consequently, the concept of constant fatigue life contour on the Γ-plane in multiaxial fatigue theories is generalized to the constant fatigue life surface in the Γ-space where the shear strain and the two normal strains are the three axes. Finally, a damage parameter as a function of the shear strain and the two normal strains is proposed for evaluation of fatigue damage under multiaxial loading conditions.  相似文献   

12.
Although several theories were more or less recently proposed to describe the Mullins effect, i.e. the stress-softening after the first load, the nonlinear equilibrium and non-equilibrium material response as well as the continuous stress-softening during fatigue loading need to be included in the analysis to propose a reliable design of rubber structures. This contribution presents for the first time a network alteration theory, based on physical interpretations of the stress-softening phenomenon, to capture the time-dependent mechanical response of elastomeric materials under fatigue loading, and this until failure. A successful physically based visco-hyperelastic model is revisited by introducing an evolution law for the physical material parameters affected by the network alteration. The general form of the model can be basically represented by two parallel networks: a nonlinear equilibrium response and a time-dependent deviation from equilibrium, in which the network parameters become functions of the damage rate (defined as the ratio of the applied cycle over the applied cycle to failure). The mechanical behavior of styrene-butadiene rubber was experimentally investigated, and the main features of the constitutive response under fatigue loading are highlighted. The experimental results demonstrate that the evolution of the normalized maximum stress only depends on the damage rate endured by the material during the fatigue loading history. The average chain length and the average chain density are then taken as functions of the damage rate in the proposed network alteration theory. The new model is found to adequately capture the important features of the observed stress-strain curves under loading-unloading for a large spectrum of strain and damage levels. The model capabilities to predict variable amplitude tests are critically discussed by comparisons with experiments.  相似文献   

13.
赵而年  瞿伟廉 《力学学报》2016,48(4):944-952
工程结构在服役过程中往往承受着复杂的多轴非比例循环荷载,在长期动力载荷作用下结构构件的失效主要为多轴非比例疲劳破坏. 文中基于圆管薄壁试件在拉-扭复合加载情况下的多轴疲劳试验结果,对比了广泛讨论的Kandil-Brown-Miller (KBM) 模型和Fatemi-Socie (FS) 模型对多轴非比例疲劳寿命的预测能力,分析了非比例加载条件引起多轴疲劳附加损伤的原因;针对FS 模型对不存在非比例附加强化的材料多轴疲劳寿命预测的不足,提出了一个能考虑非比例加载路径变化和材料附加强化效应双重作用的非比例影响因子,参照FS 准则提出了一种新的多轴非比例低周疲劳寿命预测临界面模型. 利用5 种材料的多轴非比例疲劳试验数据对该模型进行了试验验证,结果表明:采用文中提出的临界面模型预测的多轴非比例疲劳寿命与试验结果符合较好,预测精度优于FS 模型;同时,该模型对不存在非比例附加强化的材料的多轴疲劳寿命预测表现出更好的适用性,且能有效的提高不同类型材料的多轴非比例疲劳寿命预测精度.   相似文献   

14.
一种估算谱载疲劳裂纹起始寿命的方法   总被引:1,自引:0,他引:1  
提出了一种估算谱载疲劳裂纹起始寿命的等效载荷法,该法在变幅载荷的均方根算式中引入加权因子和修正系数来分别反映不同载荷变程和平均应力对变幅疲劳寿命的影响,并用相应获得的等幅载荷取代变幅载荷来估算谱载下的疲劳裂纹起始寿命.该法仅依赖于材料的等幅S-N曲线和单轴力学性能,不含任何待定参数,使用方便;两种材料3种谱载下15组变幅疲劳试验数据的评估结果显示,该法的平均寿命预测精度分别较同类型的Miner法则、修正Miner法则、均方根法提高了99.1%,24.6%和50.0%。  相似文献   

15.
A fatigue damage model is proposed to establish a predictive formula for the fatigue service life of polycarbonate (PC) materials. A damage variable is introduced in terms of remaining fracture strain, and a new fatigue damage evolution relation is derived to characterize the extent of fatigue damage after a certain number of loading cycles. Fatigue tests were conducted to construct the stress amplitude versus the fatigue life curve. After different numbers of cycles of fatigue, the new damage variable for PC materials was measured by pulling damaged specimens to fracture under monotonic loading. Experimental results on damage evolution and fatigue life have a good agreement with those predicted by the proposed damage model.  相似文献   

16.
缺口件疲劳问题的研究日益引起各国学者的重视. 局部应力-应变法以其简单性在工程中得到了广泛应用, 该方法通常会得到偏于安全的结果. 引入疲劳缺口因子代替弹性应力集中因子针对缺口疲劳进行研究, 仍未能从本质上改善预测结果的准确性. 考虑到"热点应力" 附近的相对应力梯度, 提出了应力梯度法研究缺口件疲劳问题, 这一概念亦被用于应力场强度方法中, 如何准确确定损伤区域是应力场强度方法需要解决的问题. 临界距离理论可将Neuber 律、Peterson 方法及应力场强度方法进行有效统一, 同时有限元方法的发展进一步支持了该理论. 目前, 该方法在高周疲劳研究中取得了较好的效果, 但对低周疲劳寿命预测的有效性仍需进一步的验证.  相似文献   

17.
为了研究考虑随机车辆冲击效应的简支梁桥疲劳安全水平,提出了基于车-桥耦合振动与随机车流的桥梁疲劳应力谱模拟方法,并应用于疲劳可靠度评估。基于某高速公路桥梁动态称重数据建立随机车流模型,采用小样本车辆数据拟合桥梁等效疲劳应力范围的插值响应函数,最后由高斯混合模型拟合大样本随机车流作用于桥梁构件的疲劳应力谱。分析了25 m标准跨径简支T梁桥底部普通钢筋的疲劳应力谱,评估了考虑路面劣化与交通量增长的桥梁疲劳可靠度。数值分析结果表明,基于随机车流模拟的疲劳应力谱具有典型的多峰分布特征,包含了超载车辆产生的疲劳应力;车辆对桥梁的冲击效应致使等效疲劳应力放大系数略大于冲击系数,当路面等级为一般时,采用规范冲击系数将低估车辆冲击效应的疲劳损伤;路面劣化与交通量增长均会导致桥梁运营期内的疲劳可靠指标显著降低,由路面劣化导致车辆对简支梁桥的冲击效应不可忽略。  相似文献   

18.
崔向阳  洪克城 《力学学报》2019,51(3):863-872
在实际工作环境中,机械结构往往承受着多轴非比例循环载荷.相比多轴比例循环加载,多轴非比例循环加载由于产生了附加强化现象,造成机械结构疲劳寿命下降.通过分析薄壁圆筒管件在非比例加载工况下应力应变变化规律和发生破坏位置,本文基于临界面法提出一种考虑多轴非比例附加损伤的疲劳模型.该模型将最大剪切应变幅平面作为临界面,提出一个新的附加强化因子,结合临界面上切应变幅和正应变幅组成新的多轴疲劳损伤参量.此参量不仅考虑了非比例加载下临界面上正应变幅和切应变幅对材料造成的疲劳损伤,还考虑到应变路径的变化和材料非比例加载敏感特性对材料疲劳寿命的影响.考虑到实际情况下模型所需材料附加强化系数有时难以获得的情况,给出了材料附加强化系数的有关近似计算公式.只需要材料基本力学参数便可得到材料附加强化系数,方便工程实际应用.采用8种材料的多轴疲劳寿命数据对提出的新模型进行检验,结果表明所提出的新模型与传统多轴疲劳模型相比预测寿命精度更高.   相似文献   

19.
张成成  姚卫星 《力学学报》2010,42(6):1225-1230
分析和讨论3种典型载荷(单轴拉压、纯扭及90^\circ非比例)情况下的5组损伤控制参数,提出了一种以临界面上最大剪切应力幅和最大法向应力的非线性组合作为损伤控制参数的多轴高周疲劳寿命预测模型, 该模型考虑了平均应力对疲劳寿命的影响, 比现有的疲劳预测模型具有更宽的金属材料适用范围. 两种不同类型材料下的多轴非比例试验的预测结果表明,模型的预测结果与试验符合较好.   相似文献   

20.
为解决随机车载下正交异性钢桥面板疲劳应力谱有限元求解耗时问题,采用拉丁超立方抽样(LHS)与Kriging方法,建立了快速获取随机车流作用下细节疲劳应力谱的LHS-Kriging有限元替代模型,并将此模型应用于南溪长江大桥正交异性钢桥面板疲劳可靠度计算。结果表明,基于LHS-Kriging方法的有限元替代模型, 不需要经过大量车辆荷载的有限元加载,可直接快速获取细节疲劳应力谱;与传统的响应面法(RSM)相比,Kriging法预测的细节等效疲劳应力更符合有限元计算结果;随着交通量增长率的增大,桥梁的疲劳可靠度显著减少;100年后,当交通量增长率为3%和5%时,正交异性桥面板与纵肋焊接处的细节疲劳可靠度小于2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号