首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
Uniform nano-sized calcium hydroxide (Ca(OH)2) monocrystal powder was synthesized from calcium oxide in a surfactant solution via a digestion method by decreasing the surface tension of the reaction system to control the growth of crystalline Ca(OH)2. The Ca(OH)2 monocrystal powder samples were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and Fourier transform-infrared spectroscopy (FT-IR). The NOx adsorption ability of the samples was evaluated, and the influence of various types and concentrations of surfactants on powder agglomeration and then the specific surface area in the precipitation process were studied. The specific surface area of the samples was found as high as 58 m2/g and 92 m2/g and the particle size, 300–400 nm and 200–300 nm in the presence of 10 wt% PEG600 and 0.086 mL/L SDS at a reaction time of 5 h, respectively. The product has an exceptionally strong adsorption ability for NOx, which makes it a highly promising adsorbent for emission control and air purification.  相似文献   

2.
W, N co-doped TiO2 nanoparticles were synthesized by a sol-gel method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), trans- mission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-1R), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectrophotometry (DRS). The results showed that the co- doped photocatalysts were essentially uniform spherical particles with the smallest particle size of 22.5 nm. Compared to un-doped TiO2, N-TiO2 and P-25, the absorption edge of the W, N co-doped TiO2 shifted to longer wavelength and its photocatalytic activity for degradation of methyl orange (MO) under Xe-lamp (350W) was higher.  相似文献   

3.
WSe2纳米结构的合成及减摩性能研究   总被引:2,自引:0,他引:2  
将W粉和Se粉按一定比例混合,直接密封在石英管中加热或高能球磨、压片,在Ar气氛中加热,得到了不同形貌的WSe2纳米结构.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM、HRTEM)分析了WSe2纳米结构的组成、微观形貌和组织形态;利用UMT-2摩擦试验机考察了WSe2作为HVI500液体基础油添加剂的摩擦磨损性能.研究结果表明:直接密封加热得到的产物为棒状WSe2纳米材料,最小棒直径为6 nm;球磨、压片后加热得到WSe2纳米颗粒,颗粒的平均尺寸在50 nm以下,二者都具有层状结构和良好的结晶性.添加质量分数5%的WSe2纳米材料作为基础油添加剂能够显著降低摩擦系数,减少磨损,增强了材料抗疲劳磨损能力.  相似文献   

4.
TiO2@ZrO2@Y2O3 :Eu3+ composite particles with a core-multishell structure were synthesized through the combination of a layer-by-layer (LBL) self-assembly method and a sol-gel process. The obtained sam- ples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and fluorescence spectropho- tometry. The results showed that the composite particles had a core-multishell structure, spherical morphology, and a narrow size distribution. The presence of a ZrO2 layer on the TiO2 core can effec- tively prevent the reaction between the TiO2 core and a Y203 shell; the temperature for the reaction between the TiO2 core and the Y203 shell in the TiO2@ZrO2@Y2O3 :Eu core-multishell phosphor can be elevated by 300 ℃ compared to that for TiO2@ZrO2:Eu. Upon excitation of the core-multishell particles in the ultraviolet (254 nm), the Eu3+ ion in the Y2O3 :Eu3+ shell shows its characteristic red emission (611 nm, 5D0→7F2), and the photoluminescence (PL) intensity of the phosphor with the core-multishell structure was obviously greater than that of the core-shell TiO2@Y2O3 :Eu phosphor.  相似文献   

5.
This study presents a novel process of in situ surface modification of CaCO3 nanoparticles using a multiple-orifice dispersion microreactor. CO2/Ca(OH)2 precipitation reaction was employed to prepare CaCO3 nanoparticles with sodium stearate surfactant. Synthesized CaCO3 products were characterized by thermogravimetric analysis (TGA), infra-red (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer–Emmet–Teller analysis (BET). The effect of various operation parameters on nanoparticles and the dosage of sodium stearate were determined. The results showed that the preparation process could be precisely controlled with efficient mass transfer process. The particles were highly hydrophobic with a contact angle of 117° and monodisperse with an average size of 30 nm. The adsorptions of sodium stearate and calcium ion on solid particles during the in situ surface modification process were investigated.  相似文献   

6.
Nanosized dispersive hexagonal magnesium hydroxide (Mg(OH)2) has been prepared using an ammonia-hydrothermal method. Citric acid and monoethanolamine (MEA) were added to the reaction system during the ammonia precipitation and hydrothermal processes, respectively, to improve the crystallinity and dispersion of the (Mg(OH)2) particles. The resulting Mg(OH)2 samples obtained under the optimum preparation conditions were characterized by scanning electron microscopy, X-ray diffraction and thermal gravity analysis, which showed that this newly developed procedure afforded well-dispersed hexagonal nanoplates of Mg(OH)2 with a mean diameter of 246 nm.  相似文献   

7.
Co–Mo/γ-Al2O3–TiO2 hydrodesulfurization (HDS) catalyst samples prepared by a urea matrix combustion (UMxC) method, were evaluated in a stainless tubular fixed-bed reactor, with thiophene, benzothiophene and dibenzothiophene in xylene as model feedstocks. The samples were pre-sulfurized using a cyclohexane solution of 3% CS2 and then tested for the HDS reaction. The test results were compared with catalysts prepared by conventional methods involving sequential impregnation (SI) and co-impregnation (CI). The catalysts were characterized using X-ray diffraction (XRD), laser Raman spectroscopy (LRS), high resolution transmission electron microscopy (HRTEM) and N2 physisorption, showing that the UMxC catalyst had higher pore volume and surface area than those prepared by the CI and SI methods. The UMxC method increased metal loading and avoided formation of inert phase, e.g., β-CoMoO4, for the HDS reaction, suggesting that UMxC method is superior to the conventional impregnation techniques. TiO2 promoter made particles on the catalyst surface closer and alleviated the interaction between molybdenum oxide and the support, and facilitated the formation of well-dispersed Co- and Mo-oxo species on catalyst surface, thus resulting in higher HDS catalytic activity than pure γ-Al2O3 support without modifiers. Consequently, the addition of TiO2 obviously improved the HDS conversion of dibenzothiophene.  相似文献   

8.
类石墨烯二硫化钼的制备及其真空摩擦学性能研究   总被引:1,自引:0,他引:1  
采用电化学剥离法制备了类石墨烯二硫化钼(MoS_2)片层,采用场发射扫描电子显微镜、透射电子显微镜表征了类石墨烯二硫化钼的结构.利用真空摩擦试验机测试了含类石墨烯MoS_2添加剂离子液体(IL-MoS_2)的摩擦学性能并与纯离子液体(IL)进行了对比.利用光学显微镜和扫描电子显微镜观察磨斑处的形貌并用X射线光电子能谱仪表征了IL-MoS_2摩擦前后的化学状态,并对润滑机理进行了分析.结果表明:电化学剥离法成功制备了类石墨烯MoS_2,这种制备方法简单易行,制得的类石墨烯MoS_2面积大,质量好,能保持二硫化钼固有的结构.IL-MoS_2对钢/钢摩擦副具有优异的减摩抗磨作用;摩擦过程中,纳米尺寸的二硫化钼吸附在钢/钢摩擦副界面形成了保护层,避免摩擦副的直接接触,降低摩擦磨损.  相似文献   

9.
α-Fe2O3 particles with various morphologies, including micro-doublesphere, tetrakaidecahedron and nanoparticles-aggregated micro-ellipsoid, were successfully synthesized via an octadecylamine-assisted hydrothermal method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results indicate that the presence of octadecylamine played a crucial role in morphology evolution by selective crystal adsorption. The protonated octadecylamine increased the pH value that accelerated nucleation, and the long alkyl groups of octadecylamine acted as an adsorption inhibitor to retard the growth of nanoparticles. The as-prepared α-Fe2O3 particles exhibited higher remanent magnetization and coercivity than other α-Fe2O3 particles of similar size. These properties should be attributed to the superstructure and the shape anisotropy of the synthesized particles.  相似文献   

10.
The microwave synthesis of MnC2O4·2H2O nanoparticles was performed through the thermal double decomposition of oxalic acid dihydrate (C2H2O4·2H2O) and Mn(OAc)2·4H2O solutions using a CATA-2R microwave reactor. Structural characterization was performed using X-ray diffraction (XRD), particle size and shape were analyzed using transmission electron microscopy (TEM). The chemical in the structures was investigated using electron paramagnetic resonance (EPR) as well as optical absorption spectra and near-infrared (NIR) spectroscopies. The nanocrystals produced with this method were pure and had a distorted rhombic octahedral structure.  相似文献   

11.
We synthesized LiMnPO4/C with an ordered olivine structure by using a microwave-assisted polyol process in 2:15 (v/v) water–diethylene glycol mixed solvents at 130 °C for 30 min. We also studied how three surfactants—hexadecyltrimethylammonium bromide, polyvinylpyrrolidone k30 (PVPk30), and polyvinylpyrrolidone k90 (PVPk90)—affected the structure, morphology, and performance of the prepared samples, characterizing them by using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, charge/discharge tests, and electrochemical impedance spectroscopy. All the samples prepared with or without surfactant had orthorhombic structures with the Pnmb space group. Surfactant molecules may have acted as crystal-face inhibitors to adjust the oriented growth, morphology, and particle size of LiMnPO4. The microwave effects could accelerate the reaction and nucleation rates of LiMnPO4 at a lower reaction temperature. The LiMnPO4/C sample prepared with PVPk30 exhibited a flaky structure coated with a carbon layer (∼2 nm thick), and it delivered a discharge capacity of 126 mAh/g with a capacity retention ratio of ∼99.9% after 50 cycles at 1C. Even at 5C, this sample still had a high discharge capacity of 110 mAh/g, demonstrating good rate performance and cycle performance. The improved performance of LiMnPO4 likely came from its nanoflake structure and the thin carbon layer coating its LiMnPO4 particles. Compared with the conventional polyol method, the microwave-assisted polyol method had a much lower reaction time.  相似文献   

12.
Previously we had developed a microfluidic system that can be easily fabricated by bending a stainless-steel tube into large circular loops. In this study, a fast and continuous preparation method for superfine TiO2 nanoparticles (TiO2-NPs) was developed for the aforementioned microfluidic system. The proposed method can yield anatase TiO2 in 3.5 min, in contrast to the traditional hydrothermal reaction method, which requires hours or even days. Different reaction conditions, such as reaction temperature (120–200 °C), urea concentration (20–100 g/L), and tube length (5–20 m) were investigated. X-ray diffraction and Brunauer–Emmett–Teller analysis indicate that the as-prepared TiO2-NPs have crystalline sizes of 4.1–5.8 nm and specific surface areas of 250.7–330.7 m2/g. Transmission electron microscopy images show that these TiO2-NPs have an even diameter of approximately 5 nm. Moreover, because of their small crystalline sizes and large specific surface areas, most of these as-prepared TiO2-NPs exhibit considerably better absorption and photocatalytic performance with methylene blue than commercial P5 TiO2 does.  相似文献   

13.
In mid-September 2013, PM2.5 samples were collected at six sites in Nanchang, Jiangxi Province, China, to quantify nine water-soluble ions (Ca2+, Mg2+, K+, Na+, NH4+, SO42−, Cl, F, NO3), 29 trace elements (Ba, Zn, Pb, Ni, Mo, Cr, Cu, Sr, Sb, Rb, Cd, Bi, Zr, V, Ga, Li, Y, Nb, W, Cs, Tl, Sc, Co, U, Hf, In, Re, Be, and Ta), and to characterize Pb isotopic ratios (207Pb/206Pb, 208Pb/206Pb, and 207Pb/204Pb) for identifying the main source(s) of Pb. The results showed that the average daily PM2.5 concentration (53.16 ± 24.17) μg/m3 was within the secondary level of the Chinese ambient air quality standard. The combined concentrations of SO42−, NH4+, and NO3 to total measured water-soluble ion concentrations in PM2.5 ranged from 79.40% to 95.18%, indicating that anthropogenic sources were significant. Coal combustion and vehicle emissions were both contributors to PM2.5 based on the NO3/SO42− ratios. Wushu School experienced the lowest concentrations of PM2.5 and most trace elements among the six sampling sites. Enrichment factor results showed that Tl, Cr, In, Cu, Zn, Pb, Bi, Ni, Sb, and Cd in PM2.5 were affected by anthropogenic activities. Cluster analysis suggested that Cd, Sb, Pb, Re, Zn, Bi, Cs, Tl, Ga, and In were possibly related to coal combustion and vehicle exhaust, while Ni, Nb, Cr, and Mo may have originated from metal smelting. Pb isotopic tracing showed that coal dust, cement dust, road dust and construction dust were the major Pb sources in PM2.5 in Nanchang. Combined, these sources contributed an average of 72.51% of the Pb measured, while vehicle exhaust accounted for 27.49% of Pb based on results from a binary Pb isotope mixed model.  相似文献   

14.
Anatase TiO2 shells assembled on hollow glass microspheres (HGM) with tunable morphologies were successfully prepared through a controllable chemical precipitation method with urea as the precipitator. Thus, glass/TiO2 core/shell composite hollow spheres with low particle density (0.40 g/cm3) were fabricated. The phase structures, morphologies, particle sizes, shell thicknesses, and chemical compositions of the composite microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The morphology of the TiO2 shell can be tailored by properly monitoring the reaction system component and parameters. The probable growth mechanism and fabrication process of the core/shell products involving the nucleation and oriented growth of TiO2 nanocrystals on hollow glass microspheres was proposed. A low infrared radiation study revealed that the radiation properties of the products are greatly influenced by the unique product shell structures. A thermal conductivity study showed that the TiO2/HGM possess low thermal conductivity that is similar to that of the pristine HGMs. This work provides an additional strategy to prepare low-density thermal insulating particles with tailored morphologies and properties.  相似文献   

15.
Graphene/hierarchy structure manganese dioxide (GN/MnO2) composites were synthesized using a simple microwave-hydrothermal method. The properties of the prepared composites were analyzed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The electrochemical performances of the composites were analyzed using cyclic voltammetry, electrochemical impedance spectrometry (EIS), and chronopotentiometry. The results showed that GN/MnO2 (10 wt% graphene) displayed a specific capacitance of 244 F/g at a current density of 100 mA/g. An excellent cyclic stability was obtained with a capacity retention of approximately 94.3% after 500 cycles in a 1 mol/L Li2SO4 solution. The improved electrochemical performance is attributed to the hierarchy structure of the manganese dioxide, which can enlarge the interface between the active materials and the electrolyte. The preparation route provides a new approach for hierarchy structure graphene composites; this work could be readily extended to the preparation of other graphene-based composites with different structures for use in energy storage devices.  相似文献   

16.
Highly uniform Ce(OH)CO3 flowers were successfully prepared in large quantities using a facile hydrothermal approach from the reaction of Ce(NH4)(NO3)4 with CO(NH2)2 at 160 °C in a water–N2H4 complex. The influences of the N2H4 content and temperature on flower formation were discussed. CeO2 flowers were prepared by thermal conversion of Ce(OH)CO3 flowers at 500 °C in air. Both Ce(OH)CO3 and CeO2 flowers were characterized by X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The UV–vis adsorption spectrum of the CeO2 flowers showed that the band gap energy (Eg) is 2.66 eV, which is lower than that of bulk ceria.  相似文献   

17.
Mesoporous γ-AlOOH@Fe3O4 magnetic nanomicrospheres were synthesized using superparamagnetic Fe3O4 nanoparticles as the core and aluminum isopropoxide (AIP) as the aluminum source. The obtained magnetic nanomicrospheres were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption–desorption and vibrating sample magnetometry (VSM). The effects of preparation parameters such as hydrolysis time of AIP, concentration of AIP and coating layer number on microspheres were investigated. The results indicated that the mesoporous γ-AlOOH@Fe3O4 magnetic nanomicrospheres consisted of a mesoporous γ-AlOOH shell and a Fe3O4 magnetic core. The diameter of γ-AlOOH@Fe3O4 nanomicrospheres was about 200 nm, the thickness of mesoporous γ-AlOOH shell was about 5 nm and the average pore size was 3.8 nm. The thickness of the mesoporous γ-AlOOH shell could be controlled via layer-by-layer coating times. The formation mechanism of the mesoporous γ-AlOOH shell involved a “chemisorption–hydrolysis” process.  相似文献   

18.
A facile method for the synthesis of silver–silica (Ag–SiO2) Janus particles with functionalities suitable for textile applications is reported. Silica nanoparticles prepared by the Stöber method were functionalized with epoxy, amine, and thiol groups, which were confirmed by Fourier transform infrared analysis. The functionalized silica nanoparticles were used to produce Pickering emulsions, and the exposed surface was used for the attachment of silver nanoparticles (AgNPs) via the low-temperature chemical reduction method. The morphology and structure of the Ag–SiO2 Janus particles were characterized by scanning electron microscopy, scanning transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray analysis, and UV–vis spectroscopy. Because of their specific functionalities, these Ag–SiO2 Janus particles are proposed for applications on textile substrates, as they can overcome several drawbacks of direct application of AgNPs on textiles, such as leaching, agglomeration, and instability during storage.  相似文献   

19.
以聚苯乙烯(PS)微球为内核,通过控制正硅酸乙酯的水解过程制备具有不同壳层形态的核/壳结构PS/SiO2复合磨料,应用于二氧化硅介质层的化学机械抛光,借助AFM测量抛光表面的形貌、轮廓曲线及粗糙度.SEM和TEM结果显示:碱性水解条件下,复合磨料的壳层由SiO2纳米颗粒组成(非连续壳层);酸性条件下,复合磨料的壳层则呈无定型网状(连续壳层).抛光对比试验结果表明:复合磨料的PS弹性内核有利于降低表面粗糙度并减少机械损伤,SiO2壳层则有利于提高材料去除率,复合磨料的核/壳协同效应对于提高抛光质量具有主要影响.相对于非连续壳层复合磨料,具有连续壳层的PS/SiO2复合磨料能够得到更低的抛光表面粗糙度值(RMS=0.136 nm),且在抛光过程中表现出了更好的结构稳定性.然而,PS/SiO2复合磨料的壳层形态对抛光速率的影响则不明显.  相似文献   

20.
The thermal decomposition of 3Mg(OH)2·MgCl2·8H2O (318MHCH) nanowires synthesized from agglomerated Mg(OH)2 microspheres was investigated. The influence of heating rate and temperature on the composition and morphology of the products was investigated. Thermogravimetric-differential scanning calorimetry, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction showed that increasing the heating rate from 1 to 20 °C/min promoted the escape of crystalline water from the 318MHCH nanowires. 318MHCH nanowires were dehydrated stepwise to 310MHCH porous nanowires from room temperature to 320 °C, and then to MgO cubic nanoparticles from 420 to 700 °C. The nanowires retained their one-dimensional morphology, until the phase changed to MgO. The immediate collapse of the one-dimensional structure was attributed to the presence of Mg–O/Cl chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号