首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超薄油膜润滑的分子动力学模拟:I.刚性分子模型   总被引:5,自引:3,他引:5  
胡元中  王慧 《摩擦学学报》1995,15(2):138-144
分子量级超薄膜的润滑特性与流体润滑及边界润滑的都有所不同,而且在超薄油膜中也同样存在着润滑剂的流动,因此,利用分子动力学方法模拟了超薄油膜中了压力流动,模拟中采用了刚性分子流体模型,重点研究固体壁面对流动的影响,结果表明,当油膜厚度远比值体分子“直径”大时,模拟所得速度剖面和流量均与流体力学的理论值基本一致,随着油膜厚度逐渐变薄,压力流动或动压流因受到固体壁面的阻碍作用而不断减小,当油膜厚度减小到  相似文献   

2.
固体边界具有的微纳米结构将影响流体在近壁面处的流动行为,进而由于尺度效应改变流体在整个微间隙的流动或润滑规律.将壁面可渗透微纳米结构等效为多孔介质薄膜,采用Brinkman方程来描述流体在近壁面边界渗透层内的流动,并将其与自由流动区域的不可压缩流体Navier-Stokes控制方程耦合,在界面处的连续边界条件下求解和分析了速度分布规律和压力变化规律.针对恒定法向承载力的油膜润滑条件,进一步讨论了静止表面或运动表面的微纳米结构对近壁面流动行为的影响;并揭示了考虑壁面微纳米结构的流体动压润滑的油膜厚度和摩擦系数的变化规律.论文结果为具有可渗透微结构表面的微间隙流动与润滑提供了理论参考.  相似文献   

3.
为探究含油轴承基体渗流及压力扩散对接触面间油膜润滑性能的影响,建立双级孔含油轴承系统的渗流润滑模型,研究轴承摩擦面上油膜分布规律与双级孔隙中压力扩散行为,分析摩擦副倾角与轴承表层渗透率变化对油膜润滑性能的影响.结果表明,流体动压力产生于摩擦界面的收敛区,并逐渐由摩擦界面向轴承基体扩散,在油压扩散过程中流体压力的作用面积增大,压力数值降低.油膜的润滑性能随倾角增大或表层渗透率减小而得到改善,相比单层含油轴承,具有致密表层的双级孔含油轴承具有较好的润滑性能.不同表层渗透率下,倾角对油膜摩擦系数的影响差异显著:在本文中计算参数下,当表层渗透率小于7×10-15 m2时,油膜的摩擦系数随倾角增大而减小;当表层渗透率高于7×10-15 m2时,油膜的摩擦系数随倾角增大而增大.倾角和表层渗透率影响含油轴承基体中的油液渗流和压力扩散行为,最终使油膜的润滑性能发生改变.研究工作为明晰含油轴承润滑机理提供一定理论依据.  相似文献   

4.
基于计入惯性项的Navier-Stokes方程和连续性方程,建立了计入油膜惯性作用的椭圆接触弹性流体润滑模型,研究了油膜惯性对椭圆接触弹流润滑性能的影响. 弹性变形通过快速傅里叶变换(FFT)计算,而油膜压力通过复合直接迭代法求解. 数值结果表明:在计入油膜惯性作用后,润滑膜的二次压力峰增大,入口区的油膜速度减小,且逆流区范围扩大;考虑油膜惯性作用后油膜厚度有所增大,当载荷从300 N增加到700 N时,中心膜厚最大增加了5.14%. 试验结果也表明,考虑油膜惯性作用后的中心膜厚数值解与试验结果更加接近.   相似文献   

5.
油-气润滑系统工作过程中,润滑油膜受微油滴冲击和压缩空气扰动影响易形成气泡夹带现象,气泡夹带行为将对壁面润滑油膜层的形成及流动过程产生重要影响。基于VOF数值模拟方法,对含气泡油膜沿倾斜壁面的流动行为进行研究,考察了气泡的存在对油膜形态和流动速度的影响规律,以及气泡破裂阶段空腔邻域内流体压力变化特性。研究表明,油膜夹带气泡的形变和迁移诱发气泡周围微流场的速度扰动现象,导致气液界面处产生非均匀速度梯度分布,进而引发油膜表面的形态波动。气泡发生破裂时,油膜空穴部位发生明显的正负压力波动现象,气泡附近壁面将承受一定的交变载荷作用。  相似文献   

6.
含油轴承基体中油液的渗流特性对轴承油膜润滑性能影响显著. 以不同孔隙率分布的环面复层含油轴承为研究对象,利用达西定律建立复层含油轴承基体中流体渗流的控制方程,在极坐标下建立环面复层含油轴承系统渗流润滑模型,研究复层环面副系统中油膜压力分布规律,分析轴承结构参数及孔隙渗流行为对油膜润滑性能的影响. 结果表明:复层含油轴承的流体动压力主要发生在环形摩擦面间,从摩擦界面到轴承底面,流体压力逐渐由外缘向圆心部位传导,流体动压力作用面积逐渐增大,压力峰值逐渐降低;随着倾角增大,摩擦界面间的油膜动压效应增强,油膜润滑性能变好;随着表层渗透率或厚度减小,摩擦界面间的油膜的渗流效应减弱,油膜润滑性能提高;与普通单层含油轴承相比,含致密表层的复层含油轴承能降低整体孔隙率,防止过多轴承间隙油液渗入多孔介质,提高轴承润滑性能. 研究工作为明晰环面复层含油轴承渗流行为及润滑机理提供一定理论依据.   相似文献   

7.
区别于基于半空间理论的传统直齿轮弹流润滑模型,本文基于有限长空间解建立考虑轮齿自由端面影响的渐开线直齿轮有限长弹流润滑模型. 采用叠加法构造自由端面,矩阵法和半解析法求解自由端面的影响,快速傅里叶变换算法加速齿面弹性变形计算;采用统一Reynolds方程法求解油膜压力和油膜厚度. 以啮合节点为特征位置,分析比较不同压力角下自由端面对直齿轮弹流润滑的影响. 结果表明:与半空间模型比较,考虑自由端面后端面峰值压力降低,压力分布更均匀,最小油膜厚度增大;增大轮齿压力角,节点压力水平减小,油膜厚度增大;当压力角不同时,自由端面对齿轮弹流润滑压力峰值的影响基本相当,对最小膜厚的影响较大.   相似文献   

8.
利用非平衡分子动力学模拟方法, 模拟了两无限大平行平板组成的纳米通道内的库埃特流动, 并给出了壁面润湿性和速度对流场密度、速度分布及壁面滑移的影响规律.数值模拟中, 统计系综采用微正则系综, 势能函数选用LJ/126模型, 壁面设为刚性原子壁面, 温度校正使用速度定标法, 牛顿运动方程的求解则采用文莱特算法.结果表明, 纳米通道内流体密度呈对称的衰减振荡分布, 且随壁面润湿性的降低, 振荡幅度减小, 振荡周期保持不变;滑移量随壁面润湿性的提高而降低, 甚至在亲水壁面时出现负滑移现象;随壁面速度的增加滑移速度逐渐增大, 且在流体呈现非线性流动阶段其增幅显著加大.另外, 还发现当壁面设置为超疏水性时, 壁面滑移呈现出随润湿性降低而减小的反常现象, 并基于杨氏方程对其进行了解释.  相似文献   

9.
姚华平  黄平 《摩擦学学报》2008,28(2):150-154
分析了微米级润滑膜条件下,光滑表面在静止粗糙表面上平行运动时的润滑状态及其承载机制,利用Reynolds流体润滑方程分析粗糙度对油膜压力、载荷及摩擦系数的影响,采用有限差分法计算在正弦和随机粗糙峰条件下油膜的压力分布曲面图,通过改变正弦粗糙度的峰高和波长分析油膜承载能力和摩擦系数随粗糙度变化的规律,同时分析了最小油膜厚度对润滑状态的影响.结果表明:两光滑平行运动的平面无法承载,而粗糙表面微粗糙峰的收敛楔形部分可以形成流体动压润滑膜并承受一定载荷;在给定最小油膜厚度的条件下,随着正弦波峰值增加,承载能力达到最大值后缓慢降低,摩擦系数达到最小值后缓慢增大;除了粗糙峰波长很小时摩擦系数很大以外,波长对摩擦系数的影响很小,而承载能力随波长以二次曲线变化并出现最大值;在给定粗糙度幅值条件下,当最小膜厚在1~100 μm时,随着最小油膜厚度的增加,承载能力减小,摩擦系数逐渐增大.  相似文献   

10.
球轴承启停过程的瞬态热混合润滑分析   总被引:3,自引:1,他引:2  
建立了角接触球轴承的几何和数学模型,通过求解考虑了热效应和时变效应的Reynolds方程,对启动和制动过程中的球轴承瞬态热混合润滑问题进行了分析,考虑了不同加速度启动工况下的瞬态热混合润滑情况.结果表明:启动过程中,随转动速度的增大,最小膜厚增大,轴承逐渐由边界润滑进入弹流润滑状态;不同滑滚比下进入弹流润滑状态的时间有所不同,随着滑滚比的增大,进入弹流润滑的时刻有所推迟,轴承处于同一转速条件下的油膜厚度变小;随着转速的增大,油膜温度升高,最高油膜温度增长幅度减小;加速度的增大使边界润滑消失的时间提前,随着转速的增加,油膜温度增大,且在同一时刻加速度越大油膜温度越高;油膜减小过程中的挤压膜作用导致轴承制动过程中的油膜厚度大于启动过程中的油膜厚度;由于在相同转速下轴承在启动时处于边界润滑状态,而在制动时处于弹流润滑状态,润滑状态的不同导致制动过程中的最高油膜温度较启动过程较小.  相似文献   

11.
陈群  孙见君 《摩擦学学报》2019,39(3):259-268
流体楔入式非接触机械密封在流体动压的形成过程中,为防止流体中固体颗粒对密封端面的损伤,需增设辅助系统以提供洁净的阻塞流体,这增加了密封初期建设和维护周期成本. 针对一种新型的泵出式自泵送流体动压型机械密封,应用Fluent中Laminar模型和DPM模型仿真研究了其在不同颗粒直径、转速、压差、液膜厚度和颗粒体积浓度下的自清洁特性. 结果表明:排屑率整体上随着颗粒体积浓度增大而减小;当颗粒体积浓度足够低时,排屑率均会达到60%以上;随着颗粒直径增大,排屑率先增大后减小,在直径0.7 μm时排屑最高达79.35%.;随着转速增大,排屑率先下降后显著上升,在计算的0~6 000 r/min范围内排屑率达到94%;排屑率受液膜厚度和压差影响较小.   相似文献   

12.
进口润滑条件对活塞环-缸套摩擦副润滑性能的影响   总被引:1,自引:0,他引:1  
目前内燃机活塞环-缸套摩擦副润滑分析中,活塞环与缸套之间的润滑状态一般假设为充分润滑或固定状况的贫油润滑,不是通过对实际润滑油膜形成情况的分析确定.本文中以一多缸四行程内燃机为研究对象,基于润滑油流量以及控制体体积变化方程,建立活塞环-缸套间润滑油的流动模型,进行了不同进口处润滑油膜供给量对活塞环-缸套摩擦副润滑特性的影响分析.结果表明:活塞环进口处的润滑条件对活塞环-缸套摩擦副的润滑性能有显著影响;进口处润滑油供给量增加,活塞环-缸套摩擦副的最小油膜厚度增加,最大油膜压力、微凸体作用力、摩擦力和功耗均相应减小;进口处供给油膜厚度较小的情况下,增加油膜供给厚度可以明显改善活塞环-缸套摩擦副的润滑性能.  相似文献   

13.
固液润湿性对流体动压润滑薄膜的影响   总被引:1,自引:0,他引:1  
利用自行开发的微型面接触润滑油膜测量系统,研究了固液润湿性对流体动压润滑油膜厚度的影响.试验中以静止的微型滑块平面和旋转的光学透明圆盘平面形成润滑副.固液的润湿性通过接触角判定,不同材料的微滑块平面和润滑液体形成不同的界面.在保持载荷和面接触楔形角不变的条件下对油膜厚度-速度关系进行了测量.结果表明:对于固液润湿性强的界面,形成的油膜厚度与经典润滑理论有较好的一致性;当固液润湿性明显降低时,测量得到的油膜厚度减小.对于试验中观察到的界面效应,应用界面滑移理论进行了初步分析.  相似文献   

14.
双矩形腔静压滑动轴承高速时的油膜润滑特性   总被引:1,自引:0,他引:1  
针对静压轴承运行过程中因工作转速(尤其是较高转速)的变化和内部流体受压摩擦发热导致油膜变薄,进而影响机械加工精度和运行可靠性的问题,采用动网格技术探索变黏度条件静压轴承高速时的油膜润滑特性.该研究方法针对新型Q1-205双矩形腔静压推力轴承,建立了轴承油膜润滑特性理论分析模型,采用C语言编辑了用于控制边界层网格运动及变黏度的UDF程序,利用有限体积法仿真分析了该型号轴承在80、100、120、140、160、180和200 r/min高转速下的油膜动态性能,揭示出高转速下膜厚变化对油腔温度、压力、流速、封油边处流量的影响规律.最后,通过设计试验测试了一定载荷下不同转速时的油膜厚度、油腔压力和温度的变化,并对理论分析和仿真模拟加以验证.研究发现,高速下的静压轴承随着油膜厚度减小,油膜温度升高加快,其黏度下降导致高速运转下润滑油变稀,形成的动压不足以补偿压力损失的压降,导致低膜厚下工作转速升高油腔内压力值反而有所降低.  相似文献   

15.
采用非平衡分子动力学模拟方法,研究了纳米尺度下十六烷润滑薄膜的分层现象和速度滑移现象,重点考察了剪切速度对速度滑移现象的影响规律,并对其中的微观机理作出了解释.研究结果表明:在铁壁面的限制情况下润滑薄膜出现了分层现象,当润滑薄膜厚度超过50?时,其中间区域呈现出体相均质流体的特征.润滑薄膜层间滑移和界面滑移的临界剪切速度分别为5.5和7.5?/ps,随着剪切速度增加,界面滑移程度增强,而层间滑移程度减弱.润滑薄膜第1和2层十六烷分子层间桥接分子数目决定层间滑移程度,随着剪切速度增加,桥接分子数目也相应增多,层间滑移程度随之减弱.  相似文献   

16.
经典雷诺润滑理论建立在无壁面滑移的假设基础之上。近年来许多试验报告了发生在流体膜流动的壁面滑移证据。本文研究了两固体表面间的流体膜流动特性和流体动力学,发现壁面滑移显著影响膜的流体动力学问题,流体动压力不仅受黏度和几何间隙的影响,而且还由壁面滑移和表面运动强力控制,通过控制表面的吸附性质,甚至可以得到零摩擦表面。另一方面,如果两个表面具有相同的滑移特性,存在一个临界滑动速度使得流体动压效应完全消失;但是在纯滚动条件下,即使界面极限剪应力很小,仍然有相当可观的流体动压效应。  相似文献   

17.
选用镀Cr膜的玻璃盘和GCr15球作为摩擦副,在NGY-6纳米润滑膜测量仪上开展球-盘点接触摩擦副在润滑状态下的低速轻载滑滚特性试验,研究不同接触应力、钢球转速、滑滚比等参数对摩擦副的摩擦系数及对应油膜厚度的影响规律.结果表明:当接触应力和钢球转速一定时,摩擦系数随滑滚比的增大逐渐增加后达到稳定状态,当滑滚比较大时,滑滚比的变化对油膜厚度几乎没有影响;当滑滚比一定时,摩擦系数随接触应力的增大逐渐增大,随钢球转速的增大逐渐减小,油膜厚度随接触应力的增大逐渐减小,随钢球转速的增大逐渐增大.摩擦副在弹流润滑状态下,摩擦系数的增加幅度随接触应力的变化较小,而在薄膜润滑状态下,其增加幅度变大.摩擦副在薄膜润滑状态下,当滑滚比在0.10~0.50变化时,摩擦系数和油膜厚度基本处于稳定状态.  相似文献   

18.
通过等温富温工况下滚子摩擦副弹流数值解研究表明,工程对数滚子具有良好的润滑特性,轻载时呈现大椭圆比点接触的特征,最小油膜厚度出现在中部,轴向油膜形状和压力分布比较均匀。载荷增大端部出现闭合效应,油膜压力局部升高,形成的封油作用使中部油膜略微增厚,最小油膜厚度转移至端部,厚度减小;速度增加使闭合效应加剧。  相似文献   

19.
格子Boltzmann方法可以有效地模拟水动力学问题,边界处理方法的选择对于可靠的模拟计算至关重要.本文基于多松弛时间格子Boltzmann模型开展了不同边界条件下,周期对称性结构和不规则结构中流体流动模拟,阐述了不同边界条件的精度和适用范围. 此外,引入一种混合式边界处理方法来模拟多孔介质惯性流, 结果表明:对于周期性对称结构流动模拟,体力格式边界条件和压力边界处理方法是等效的,两者都能精确地捕捉流体流动特点; 而对于非周期性不规则结构,两种边界处理方法并不等价,体力格式边界条件只适用于周期性结构;由于广义化周期性边界条件忽略了垂直主流方向上流体与固体格点的碰撞作用,同样不适合处理不规则模型;体力-压力混合式边界格式能够用来模拟周期性或非周期性结构流体流动,在模拟多孔介质流体惯性流时,比压力边界条件有更大的应用优势,可以获得更大的雷诺数且能保证计算的准确性.   相似文献   

20.
偏心轮机构时变热弹流润滑问题分析   总被引:1,自引:0,他引:1  
王静  杨沛然 《摩擦学学报》2002,22(6):481-485
采用多重网格技术对偏心轮-挺杆副的热弹流润滑问题进行了数值模拟,给出了该问题的完全数值解,比较了等温解和热解,分析了反向运动对油膜压力和厚度的影响,并采用"温度-粘度楔"机理进行解释,着重阐述了在零卷吸速度条件下的压力、膜厚、温度和流速分布.数值模拟计算结果表明,在偏心轮-挺杆工作的一个周期内,热效应的影响不可忽略;零卷吸速度时,接触区温升很高,接近两固体表面的流体呈现出不流动状态,此状态归因于特定的温度和卷吸速度条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号