首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We study a three-dimensional contact problem on the indentation of an elliptic punch into a face of a linearly elastic wedge. The wedge is characterized by two parameters of elasticity and its edge is subjected to the action of an additional concentrated force. The other face wedge is free from stresses. The problem is reduced to an integral equation for the contact pressure. An asymptotic solution of this equation is obtained which is effective for a given contact region fairly remote from the edge. Calculations are performed that allow one to evaluate the effect of a force applied outside the contact region on the contact pressure distribution. The problem under study is a generalization of L. A. Galin’s problem on a force applied outside a circular punch on an elastic half-space [1, 2]. In a special case of a wedge with an opening angle of 180° and zero contact ellipse eccentricity, the obtained asymptotic relation coincides with the expansion of Galin’s exact solution in a series. Problems of indentation of an elliptic punch into a spatial wedge with the face not loaded outside the contact region have been studied previously. For example, the paper [3] dealt with the case of a known contact region (asymptotic method) and the paper [4] considered the case of an unknown contact region (numerical method). The solution of Galin’s problem allowed the authors of [2] to reduce the contact problem on the interaction of several punches applied to a half-space to a system of Fredholm integral equations of the second kind (Andreikin-Panasyuk method). A topical direction in contact mechanics is the model of discrete contact as well as related problems on the interaction of several punches [2, 5–8]. The interaction of several punches applied to a face of a wedge can be treated in a similar manner and an asymptotic solution can be obtained for the case where a concentrated force is applied at an arbitrary point of this face beyond the contact region rather than on the edge.  相似文献   

2.
The idea, first used by the author for the case of crack problems, is applied here to solve a contact problem for a transversely isotropic elastic layer resting on a smooth elastic half-space, made of a different transversely isotropic material. A rigid punch of arbitrary shape is pressed against the layer’s free surface. The governing integral equation is derived; it is mathematically equivalent to that of an electrostatic problem of an infinite row of coaxial charged disks in the shape of the domain of contact. The case of circular domain of contact is considered in detail. As a comparison, the method of integral transforms is also used to solve the problem. The main difference of our integral transform approach with the existing ones is in separating of our half-space solution from the integral transform terms. It is shown that both methods lead to the same results, thus giving a new interpretation to the integral transform as a sum of an infinite series of generalized images.  相似文献   

3.
V. I. Fabrikant 《Meccanica》2011,46(6):1239-1263
The idea of generalized images, first used by the author for the case of crack problems, is applied here to solve a contact problem for n transversely isotropic elastic layers, with smooth interfaces, resting on a smooth elastic half-space, made of a different transversely isotropic material. A rigid punch of arbitrary shape is pressed against the top layer’s free surface. The governing integral equation is derived for the case of two layers; it is mathematically equivalent to that of an electrostatic problem of an infinite row of coaxial charged disks in the shape of the domain of contact. This result is then generalized for an arbitrary number of layers. As a comparison, the method of integral transforms is also used to solve the problem. The main difference of our integral transform approach with the existing ones is in separating of our half-space solution from the integral transform terms. It is shown that both methods lead to the same results, thus giving a new interpretation to the integral transform as a sum of an infinite series of generalized images.  相似文献   

4.
This paper is concerned with the stationary plane contact of an insulated rigid punch and a half-space which is elastically anisotropic but thermally conducting. The frictional heat generation inside the contact region due to the sliding of the punch over the half-space surface and the heat radiation outside the contact region are taken into account. With the help of Fourier integral transform, the problem is reduced to a system of two singular integral equations. The equations are solved numerically by using Gauss-Jacobi and trapezoidal-rule quadratures. The effects of anisotropy and thermal effects are shown graphically.  相似文献   

5.
The paper is concerned with a contact problem about rigid rectangular punch forced into a half-space made of a linear elastic isotropic material with voids. We use a Cowin–Nunziato model for the half-space, and reduce the problem to a double Fredholm integral equation of the first kind. Then we apply two different approaches, to solve this equation. The first one is based on a direct collocation numerical technique. The second method is asymptotic, and we use a small parameter that is the relative width of the punch. Finally, compliance of the punch is determined, and results of the two different methods are compared with each other, as well as with a Sivashinsky–Panek–Kalker solution. Mathematics Subject Classifications (2000) 74M15.  相似文献   

6.
The optimization problem for the contact interaction between a rigid punch and an elasticmediumis considered. It is assumed that that the punch is under the action of some prescribed forces and momenta and moves along a surface bounding a half-space filled with an elastic medium. It is also assumed that themotion is quasistatic and the friction forces arising in the region of contact are taken into account. The punch shape is considered as the desired design variable, and the integral functional characterizing the discrepancy between the pressure distribution in the region of contact that corresponds to the optimized shape of the punch and a given goal distribution of pressure is taken as the minimizing criterion. The optimal shape can be determined efficiently by solving the following two problems: first, to obtain the optimal pressure distribution and then to solve a boundary value problemfor the elastic half-space under the action of the obtained normal pressure and friction forces. By way of example, the optimal shape is analytically determined for a punch of rectangular shape in horizontal projection.  相似文献   

7.
In this paper, we consider the plane problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and over a certain segment of its top surface is subjected to normal tractions while the rest of this surface is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using integral transforms, the plane elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact half-length. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact half-length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

8.
A solution is given for the frictionless indentation of an elastic half-space by a flat-ended cylindrical punch with a central circular recess, when the load is large enough to establish a circular region of contact in the recess. The problem is reduced to two simultaneous Fredholm equations using the method of complex potentials due to Green and Collins. Results are presented for the relationship between load, contact radius and penetration for various punch geometries.  相似文献   

9.
In this paper, we consider the axisymmetric problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and is subjected over a part of its top surface to normal tractions while the rest of it is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using Hankel transform, the axisymmetric elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact radius. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using orthogonal Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

10.
考虑力-电-磁-热等多场耦合作用, 基于线性理论给出了磁-电-弹性半空间在表面轴对称温度载荷作用下的热-磁-电-弹性分析, 并得到了问题的解析解. 利用Hankel 积分变换法求解了磁-电-弹性材料中的热传导及控制方程, 讨论了在磁-电-弹性半空间在边界表面上作用局部热载荷时的混合边值问题, 利用积分变换和积分方程技术, 通过在边界表面上施加应力自由及磁-电开路条件, 推导得到了磁-电-弹性半空间中位移、电势及磁势的积分形式的表达式. 获得了磁-电-弹性半空间中温度场的解析表达式并且给出了应力, 电位移和磁通量的解析解. 数值计算结果表明温度载荷对磁-电-弹性场的分布有显著影响. 当温度载荷作用的圆域半径增大时, 最大正应力发生的位置会远离半无限大体的边界; 反之当温度载荷作用的圆域半径减小时, 最大应力发生的位置会靠近半无限大体的边界. 电场和磁场在温度载荷作用的圆域内在边界表面附近有明显的强化, 而磁-电-弹性场强化区域的强化程度跟温度载荷的大小和作用区域大小相关. 本研究的相关结果对智能材料和结构在热载荷作用下的设计和制造具有指导意义.   相似文献   

11.
考虑力-电-磁-热等多场耦合作用, 基于线性理论给出了磁-电-弹性半空间在表面轴对称温度载荷作用下的热-磁-电-弹性分析, 并得到了问题的解析解. 利用Hankel 积分变换法求解了磁-电-弹性材料中的热传导及控制方程, 讨论了在磁-电-弹性半空间在边界表面上作用局部热载荷时的混合边值问题, 利用积分变换和积分方程技术, 通过在边界表面上施加应力自由及磁-电开路条件, 推导得到了磁-电-弹性半空间中位移、电势及磁势的积分形式的表达式. 获得了磁-电-弹性半空间中温度场的解析表达式并且给出了应力, 电位移和磁通量的解析解. 数值计算结果表明温度载荷对磁-电-弹性场的分布有显著影响. 当温度载荷作用的圆域半径增大时, 最大正应力发生的位置会远离半无限大体的边界; 反之当温度载荷作用的圆域半径减小时, 最大应力发生的位置会靠近半无限大体的边界. 电场和磁场在温度载荷作用的圆域内在边界表面附近有明显的强化, 而磁-电-弹性场强化区域的强化程度跟温度载荷的大小和作用区域大小相关. 本研究的相关结果对智能材料和结构在热载荷作用下的设计和制造具有指导意义.  相似文献   

12.
Numerical and analytical solutions of the 3D contact problem of elasticity on the penetration of a rigid punch into an orthotropic half-space are obtained disregarding the friction forces.A numericalmethod ofHammerstein-type nonlinear boundary integral equations was used in the case of unknown contact region, which permits determining the contact region and the pressure in this region. The exact solution of the contact problem for a punch shaped as an elliptic paraboloid was used to debug the program of the numerical method. The structure of the exact solution of the problem of indentation of an elliptic punch with polynomial base was determined. The computations were performed for various materials in the case of the penetration of an elliptic or conical punch.  相似文献   

13.
The isolation of the vibration due to harmonic Rayleigh waves using pile rows embedded in a saturated poroelastic half-space is investigated in this study. Based on Biot’s theory and the potential function method, the free field solution for Rayleigh waves along the surface of the poroelastic half-space is derived first. The fundamental solution for a harmonic circular patch load applied in the poroelastic half-space are obtained in terms of Biot’s theory and the integral transform method. Using Muki’s method and the fundamental solution for the circular patch load as well as the Rayleigh waves solution for the poroelastic half-space, the second kind of Fredholm integral equations in the frequency domain for pile rows are derived. Numerical solution of the integral equations yields the dynamic response of the pile–soil system to incident Rayleigh waves. Influences of various parameters on the vibration isolation effect of piles rows are investigated numerically. Numerical results suggest that for the same vibration source, the same pile rows will produce a better vibration isolation effect for the poroelastic medium than for a single phase elastic medium. Also, stiffer piles tend to have better vibration isolation effect than flexible piles. Moreover, the pile length and the spacing between neighboring piles in each pile row have significant influence on the vibration isolation effect of pile rows.  相似文献   

14.
The problem considered is that of a rigid flat-ended punch with rectangular contact area pressed into a linear elastic half-space to a uniform depth. Both the lubricated and adhesive cases are treated. The problem reduces to solving an integral equation (or equations) for the contact stresses. These stresses have a singular nature which is dealt with explicitly by a singularity-incorporating finite-element method. Values for the stiffness of the lubricated punch and the adhesive punch are determined: the effect of adhesion on the stiffness is found to be small, producing an increase of the order of 3%.  相似文献   

15.
In this article, we study the axisymmetric tor-sional contact problem of a half-space coated with func-tionally graded piezoelectric material (FGPM) and subjected to a rigid circular punch. It is found that, along the thick-ness direction, the electromechanical properties of FGPMs change exponentially. We apply the Hankel integral trans-form technique and reduce the problem to a singular integral equation, and then numerically determine the unknown con-tact stress and electric displacement at the contact surface. The results show that the surface contact stress, surface azimuthal displacement, surface electric displacement, and inner electromechanical field are obviously dependent on the gradient index of the FGPM coating. It is found that we can adjust the gradient index of the FGPM coating to modify the distributions of the electric displacement and contact stress.  相似文献   

16.
The 3D contact problem on the action of a punch elliptic in horizontal projection on a transversally isotropic elastic half-space is considered for the case in which the isotropy planes are perpendicular to the boundary of the half-space. The elliptic contact region is assumed to be given (the punch has sharp edges). The integral equation of the contact problem is obtained. The elastic rigidity of the half-space boundary characterized by the normal displacement under the action of a given lumped force significantly depends on the chosen direction on this boundary. In this connection, the following two cases of location of the ellipse of contact are considered: it can be elongated along the first or the second axis of Cartesian coordinate system on the body boundary. Exact solutions are obtained for a punch with base shaped as an elliptic paraboloid, and these solutions are used to carry out the computations for various versions of the five elastic constants. The structure of the exact solution is found for a punch with polynomial base, and a method for determining the solution is proposed.  相似文献   

17.
Rektorys’ approach is used in implementing the Ritz method to solve the contact problem for a circular punch on an elastic foundation of general form __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 4, pp. 65–71, April 2008.  相似文献   

18.
Torsion of an elastic half-space by a rigid punch is investigated. The boundary of the half-space is assumed to be rough. Two geometries of the punch-parabolic and flat end are considered. It is shown that the contact area consists of stick and slip zones. This fact, which is well-known in the classical torsional contact of the elastic half-space with the smooth surface and the parabolic punch, also holds true for the flat-ended punch if the boundary roughness is involved. The partial slip problems are reduced to the integral equations, which are solved numerically. The presented results show the effects of boundary roughness on the shear stresses, size of the stick area and the relation between the twisting moment and the angle of twist.  相似文献   

19.
We consider the axisymmetric contact problem on the indentation of a round punch with plane base into an elastic half-space. Roughness is taken into account in the framework of the well-known model in which the local surface displacements are proportional to some power of the contact pressures at the same point. To study the problem, we use the theory of nonlinear integral equations of Hammerstein type together with the mathematical technique of orthogonal Legendre polynomials and the contraction mapping principle. We obtain an approximate analytic solution of the problem, numerically analyze the results, and reveal typical laws of variation of the main mechanical variables.  相似文献   

20.
Free vibration analysis of functionally graded (FG) thin-to-moderately thick annular plates subjected to thermal environment and supported on two-parameter elastic foundation is investigated. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle based on the first order shear deformation theory (FSDT). The initial thermal stresses are obtained by solving the thermoelastic equilibrium equations. Differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic and FG circular and annular plates. The effects of the temperature rise, elastic foundation coefficients, the material graded index and different geometrical parameters on the frequency parameters of the FG annular plates are investigated. The new results can be used as benchmark solutions for future researches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号