首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This paper first presents the turbulent heat transfer phenomenon of the boundary layer over a 2-dimensional hill using the direct numerical simulation (DNS). DNS results reveal turbulent heat transfer phenomena in the boundary layer over a 2-dimensional hill affected by the flow acceleration and the concave wall at the foreface of a hill, the convex wall at the top of the hill, and the flow deceleration, separation, and reattachment and the concave wall at the back of the hill. The prediction of turbulent heat transfer, the turbulence models of LES and HLR should be assessed in such heat transfer because these models have seldom been evaluated in the complex turbulent heat transfer. Therefore, this paper also presents evaluations of predictions of LES and HLR in the complicated turbulent heat transfer which is the boundary layer with heat transfer over a 2-dimensional hill. Consequently, this paper obviously shows the detailed turbulent heat transfer phenomena of a boundary layer over a 2-dimensional hill via DNS, and the evaluation results of prediction accuracy of LES and HLR for the heat transfer. LES and HLR give good prediction in comparison with DNS results, but the predicted reattachment and separation points are slightly different from DNS.  相似文献   

2.
The problem of finite amplitude thermal convection in a three-dimensional finite box of fluid saturated porous material is investigated, when the lower boundary of the fluid is corrugated. The nonlinear problem of three-dimensional convection in the box for the values of the Rayleigh number close to the classical critical value and for small values of the amplitude of the corrugations is solved by a perturbation technique. The preferred mode of convection is determined by stability analysis. In the absence of corrugation three-dimensional modes of convection can be either stable or unstable depending on the values of the aspect ratios of the box, while two-dimensional rolls are always stable, provided that the box aspect ratios allow the existence of such modes of convection. In the presence of boundary corrugation with the appropriate form, different three-dimensional or two-dimensional modes of corrugation can be stable or unstable. For a rough boundary with local roughness sites, the location, size, and number of the roughness elements plus the wave numbers of the convection modes and the box aspect ratios can all play a role leading to either stable or unstable particular three- or two-dimensional flow patterns. For a wavy boundary, resonant wave-vector excitation can lead to the preference of stable two- or three-dimensional flow patterns whose wave vectors are in a subset of those due to the wavy boundary, while nonresonant wave-vector excitation can lead to the preference of stable flow patterns whose wave vectors are not generally in a subset of those due to the wavy boundary. Heat transported by convection can either be enhanced or be reduced by certain proper forms of the corrugations and by appropriate values of the box aspect ratios. Due to the surface corrugation highly subcritical modes of convection are stable, while highly supercritical modes of convection are unstable. Received 24 July 1998 and accepted 11 April 1999  相似文献   

3.
细颗粒泥沙净冲刷和输移的大涡模拟研究   总被引:1,自引:1,他引:0  
在传统水沙输移数值模拟研究中一般采用雷诺时均模拟技术(Reynolds-averaged simulation,RANS).与RANS相比,大涡模拟技术(large eddy simulation,LES)能够更加精确反映细部流动结构,计算机的发展使得采用LES探讨水流和泥沙运动规律成为可能.本文尝试给出净冲刷条件下悬沙计算的边界条件,采用动态亚格子模式对循环槽道和长槽道中的水流运动和泥沙输移进行了三维大涡模拟研究.利用直接数值模拟(direct numerical simulation,DNS)结果对LES模型进行了率定,计算结果符合良好,在此基础上初步探讨了泥沙浓度、湍动强度和湍动通量等的分布特征.结果表明,净冲刷条件下输沙平衡时泥沙浓度符合Rouse公式分布,单向流动中泥沙浓度沿着流向逐渐增大.泥沙浓度湍动强度和湍动通量都在近底部达到最大值,沿着垂向迅速减小.湍动黏性系数和扩散系数基本上在水深中间处达到最大.湍动Schmidt数沿着水深方向不是常数,在近底部和自由水面附近较大,在水深中间处较小.  相似文献   

4.
This paper investigates the use of LES for a flow around a three-dimensional axisymmetric hill. Two aspects of this simulation in particular are discussed here, the resolution and the inlet boundary conditions. In contrast to the LES of flows with sharp edge separations which do not require the near-wall dynamics to be fully resolved, the hill flow LES relies on the resolution of the upstream boundary layer in order to provoke the separation at a correct position. Although around 15 ×106 computational cells were used, the resolution of streaky structures in the near-wall region that are important for a LES is not achieved. Two different inlet boundary conditions were used: the steady experimental profile and the time-dependent boundary conditions produced from DNS results of low Reynolds number channel flow. No significant improvement in the results was obtained with the unsteady inlet condition. This indicates that, although the unsteady inlet boundary conditions may be necessary for a successful LES of this flow, they must be followed with the resolution of the boundary layer for a successful LES.  相似文献   

5.
Large Eddy Simulations (LES) of spatially developing turbulent mixing layers have been performed for flows of uniform density and Reynolds numbers of up to 50,000 based on the visual thickness of the layer and the velocity difference across it. On a fine LES grid, a validation simulation performed with a hyperbolic tangent inflow profile produces flow statistics that compare extremely well with reference Direct Numerical Simulation (DNS) data. An inflow profile derived from laminar Blasius profiles produces a flow that is significantly different to the reference DNS, particularly with respect to the initial development of the flow. When compared with experimental data, however, it is the boundary layer-type inflow simulation produces the better prediction of the flow statistics, including the mean transition location. It is found that the boundary layer inflow condition is more unstable than the hyperbolic tangent inlet profile. A suitably designed coarse LES grid produces good predictions of the mean transition location with boundary layer inflow conditions at a low computational cost. The results suggest that hyperbolic tangent functions may produce unreliable DNS data when used as the initial condition for studies of the transition in the mixing layer flow.  相似文献   

6.
高超声速边界层转捩会使飞行器表面热流和摩阻增加3~5倍,极大影响高超声速飞行器的性能.波纹壁作为一种可能的推迟边界层转捩的被动控制方法,具有较强的工程应用前景.文章研究了不同高度和安装位置的波纹壁对来流马赫数6.5的平板边界层稳定性的影响.采用直接数值模拟(DNS)得到层流场,并在上游分别引入不同频率的吹吸扰动以研究波纹壁对扰动演化的作用.对于不同位置的波纹壁,探究了其与同步点相对位置对其作用效果的影响,与相同工况下光滑平板的扰动演化结果进行了对比,发现当快慢模态同步点位于波纹壁上游时,波纹壁会对该频率的第二模态扰动起到抑制作用.当同步点位于波纹壁之中或者下游时,波纹壁对扰动的作用可能因为存在两种不同的机制而使得结果较为复杂.对于不同高度波纹壁,发现高度较低的波纹壁,其作用效果强弱与波纹壁高度成正相关,而更高的波纹壁则会减弱其作用效果.与DNS结果相比,线性稳定性理论可以定性预测波纹壁对高频吹吸扰动的作用,但在波纹壁附近的强非平行性区域误差较大.  相似文献   

7.
Large-eddy simulation (LES) has been extensively used as a tool to understand how various processes contribute to the dynamics of the stratocumulus layer. These studies are complicated by the fact that many processes are tied to the dynamics of the stably stratified interface that caps the stratocumulus layer, and which is inadequately resolved by LES. Recent direct numerical simulations (DNS) of isobaric mixing due to buoyancy reversal in a cloud-top mixing layer show that molecular effects are in some instances important in setting the cloud-top entrainment rate, which in turn influences the global development of the layer. This suggests that traditional LES are fundamentally incapable of representing cloud-top processes that depend on buoyancy reversal and that numerical artefacts can affect significantly the results. In this study, we investigate a central aspect of this issue by developing a test case that embodies important features of the buoyancy-reversing cloud-top layer. So doing facilitates a one-to-one comparison of the numerical algorithms typical of LES and DNS codes in a well-established case. We focus on the numerical effects only by switching off the subgrid-scale model in the LES code and using instead a molecular viscosity. We systematically refine the numerical grid and quantify numerical errors, validate convergence and assess computational efficiency of the low-order LES code compared to the high-order DNS. We show that the high-order scheme solves the cloud-top problem computationally more efficiently. On that basis, we suggest that the use of higher-order schemes might be more attractive than further increasing resolution to improve the representation of stratocumulus in LES.  相似文献   

8.
In order to understand the effect of the vertical heat transfer on thermocapillary convection characteristics in a differentially heated open shallow rectangular cavity, a series of two- and three-dimensional numerical simulations were carried out by means of the finite volume method. The cavity was filled with the 1cSt silicone oil (Prandtl number Pr = 13.9) and the aspect ratio ranged from 12 to 30. Results show that thermocapillary convection is stable at a small Marangoni number. With the increase of the heat flux on the bottom surface, thermocapillary convection transits to the asymmetrical bi-cellular pattern with the opposite rotation direction. The roll near the hot wall shrinks as the Marangoni number increases. At a large Marangoni number, numerical simulations predict two types of the oscillatory thermocapillary flow. One is the hydrothermal wave, which is dominant only in a thin cavity. The other appears in a deeper cavity and is characterized by oscillating multi-cellular flow. The critical Marangoni number for the onset of the oscillatory flow increases first and then decreases with the increase of the vertical heat flux. The three-dimensional numerical simulation can predict the propagating direction of the hydrothermal wave. The velocity and temperature fields obtained by three-dimensional simulation in the meridian plane are very close to those obtained by two-dimensional simulation.  相似文献   

9.
陈歆怡  王晓亮  刘青泉  张静 《力学学报》2021,53(5):1457-1470
滚波是一种重力作用下自由液面失稳诱发的水面波动现象, 通常可分为具有相对稳定波形和波速的周期性滚波与波形和波速不断变化的不规则滚波(自然滚波). 不规则滚波的相互作用和发展演化过程十分复杂, 至今对其认识尚不成熟. 本文采用基于雷诺平均Navier-Stokes方程的立面二维数值模型, 对不规则滚波发展过程中的吸收聚合和追赶聚合现象进行了数值模拟研究. 分析了两种聚合模式的演化过程, 给出了滚波聚合过程中完整的波形、波速、速度剖面以及湍流黏性等重要信息. 结果表明滚波的聚合过程是不规则滚波演化和增长的重要机制, 在特定条件下滚波增长由自然增长模式转变为以吸收聚合和追赶聚合为主的增长模式. 滚波聚合过程中, 依次经历后波追赶、爬升、与前波合并、内部流场调制等多个步骤, 最终形成一个具有更大波长和波高的滚波. 本文发现了在3个滚波间距较近的情况下, 会发生二重聚合现象, 即后两个滚波首先聚合, 然后与前波进一步聚合形成一个新的滚波.   相似文献   

10.
Turbulence motions are, by nature, three-dimensional while planar imaging techniques, widely used in turbulent combustion, give only access to two-dimensional information. For example, to extract flame surface densities, a key ingredient of some turbulent combustion models, from planar images implicitly assumes an instantaneously two-dimensional flow, neglecting the unresolved flame front wrinkling. The objective here is to estimate flame surface densities from two-dimensional measurements assuming that (1) the flow is statistically two dimensional; (2) the measuring plane is a plane of symmetry of the mean flow, either by translation (homogeneous third direction as in slot burners for example) or by rotation (axi-symmetrical flows such as jets) and (3) flame movements in transverse directions are similar. The unknown flame front wrinkling is then modelled from known quantities. An excellent agreement is achieved against direct numerical simulation (DNS) data where all three-dimensional quantities are known, but validations in other conditions (larger DNS, experiments) are required.  相似文献   

11.
The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid;scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.  相似文献   

12.
A synthetic turbulence generation (STG) method for subsonic and supersonic flows at low and moderate Reynolds numbers to provide inflow distributions of zonal Reynolds-averaged Navier–Stokes (RANS) – large-eddy simulation (LES) methods is presented. The STG method splits the LES inflow region into three planes where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Based on the wall-normal position and the local flow Reynolds number, specific length and velocity scales with different vorticity content are imposed at the inlet plane of the boundary layer. The quality of the STG method for incompressible and compressible zero-pressure gradient boundary layers is shown by comparing the zonal RANS–LES data with pure LES, pure RANS, and direct numerical simulation (DNS) solutions. The distributions of the time and spanwise wall-shear stress, Reynolds stress distributions, and two point correlations of the zonal RANS–LES simulations are smooth in the transition region and in good agreement with the pure LES and reference DNS findings. The STG approach reduces the RANS-to-LES transition length to less than four boundary-layer thicknesses.  相似文献   

13.
Linear stability of two-dimensional steady flow in wavy-walled channels   总被引:1,自引:0,他引:1  
Linear stability of fully developed two-dimensional periodic steady flows in sinusoidal wavy-walled channels is investigated numerically. Two types of channels are considered: the geometry of wavy walls is identical and the location of the crest of the lower and upper walls coincides (symmetric channel) or the crest of the lower wall corresponds to the furrow of the upper wall (sinuous channel). It is found that the critical Reynolds number is substantially lower than that for plane channel flow and that when the non-dimensionalized wall variation amplitude is smaller than a critical value (about 0.26 for symmetric channel, 0.28 for sinuous channel), critical modes are three-dimensional stationary and for larger , two-dimensional oscillatory instabilities set in. Critical Reynolds numbers of sinuous channel flows are smaller for three-dimensional disturbances and larger for two-dimensional disturbances than those of symmetric channel flows. The disturbance velocity distribution obtained by the linear stability analysis suggests that the three-dimensional stationary instability is mainly caused by local concavity of basic flows near the reattachment point, while the critical two-dimensional mode resembles closely the Tollmien–Schlichting wave for plane Poiseuille flow.  相似文献   

14.
Large-eddy simulation (LES) results for laminar-to-turbulent transition in a spatially developing boundary layer are presented. The disturbances are ingested into a laminar flow through an unsteady suction-and-blowing strip. The filtered, three-dimensional time-dependent Navier–Stokes equations are integrated numerically using spectral, high-order finite-differences, and a three-stage low-storage Runge–Kutta/Crank–Nicolson time-advancement method. The buffer-domain technique is used for the outflow boundary condition. The localized dynamic model used to parametrize the subgrid-scale (SGS) stresses begins to have a significant impact at the beginning of the nonlinear transition (or intermittency) region. The flow structures commonly found in experiments are also observed in the present simulation; the computed linear instability modes and secondary instability $\Lambda$-vortex structures are in agreement with the experiments, and the streak-like structures and turbulent statistics compare with both the experiments and the theory. The physics captured in the present LES are consistent with the experiments and the full Navier–Stokes simulation (DNS), at a significant fraction of the DNS cost. A comparison of the results obtained with several SGS models shows that the localized model gives accurate results both in a statistical sense and in terms of predicting the dynamics of the energy-carrying eddies, while requiring fewer ad hoc adjustments than the other models. Received: 5 April 1996 and accepted 27 March  相似文献   

15.
We prove the existence of a large family of two-dimensional travelling wave patterns for a Boussinesq system which describes three-dimensional water waves. This model equation results from full Euler equations in assuming that the depth of the fluid layer is small with respect to the horizontal wave length, and that the flow is potential, with a free surface without surface tension. Our proof uses the Lyapunov–Schmidt method which may be managed here, contrary to the case of gravity waves with full Euler equations. Our results are in a good qualitative agreement with experimental results.  相似文献   

16.
The two-layer modeling approach has become one of the most promising and successful methodology for simulating turbulent boundary layers in the past ten years. In the present study, a mixed wall model for large-eddy simulations (LES) of high-speed flows is proposed which combine two approaches; the thin-Boundary Layer Equations (TBLE) model of Kawai and Larsson (1994) and the analytical wall-layer model of Duprat et al. (2011) for streamwise pressure gradients. The new hybrid model has been efficiently implemented into a three-dimensional compressible LES solver and validated against DNS of a spatially-evolving supersonic boundary layer (BL) under moderate and strong pressure gradients, before being employed for the prediction of nozzle flow separations at different flow conditions, ranging from weakly to highly over-expanded regimes. A good agreement is obtained in terms of mean and fluctuating quantities compared to the DNS results. Particularly, the current wall-modeled LES results are found to perfectly match the DNS data of supersonic BL with/out pressure gradient. It is also shown that the model can account for the effect of the large-scale turbulent motions of the outer layer, indicating a good interaction between the inner and the outer part of the wall layer. In terms of simulations costs and improvements of computing power, the obtained results highlight the capability of the current wall-modeling LES strategy in saving a considerable amount of computational time compared to the wall-resolved LES counterpart, allowing to push further the simulations limits. Furthermore, the application of these computationally low-costly LES simulations to nozzle flow separation allows to clearly identify the origin of the shock unsteadiness, and the existence of broadband and energetically-significant low-frequency oscillations (LFO) in the vicinity of the separation region.  相似文献   

17.
A large eddy simulation (LES) study was conducted to investigate the three-dimensional characteristics of the turbulent flow past wavy cylinders with yaw angles from 0° to 60° at a subcritical Reynolds number of 3900. The relationships between force coefficients and vortex shedding frequency with yaw angles for both wavy cylinders and circular cylinders were investigated. Experimental measurements were also performed for the validation of the present LES results. Comparing with corresponding yawed circular cylinders at similar Reynolds number, significant differences in wake vortex patterns between wavy cylinder and circular cylinder were observed at small yaw angles. The difference in wake pattern becomes insignificant at large yaw angles. The mean drag coefficient and the Strouhal number obey the independence principle for circular cylinders at yaw angle less than 45°, while the independence principle was found to be unsuitable for yawed wavy cylinders. In general, the mean drag coefficients and the fluctuating lift coefficients of a yawed wavy cylinder are less than those of a corresponding yawed circular cylinder at the same flow condition. However, with the increase of the yaw angle, the advantageous effect of wavy cylinder on force and vibration control becomes insignificant.  相似文献   

18.
The flow around a low-pressure turbine rotor blade with incoming periodic wakes is computed by means of DNS and LES. The latter adopts a dynamic sub-grid-scale model. The computed results are compared with time-averaged and instantaneous measured quantities. The simulation sreveal the presence of elongated flow structures, stemming from the incoming wake vorticity, which interact with the pressure side boundary layer. As the wake approaches the upstream half of the suction side, its vortical structures are stretched and align with the main flow, resulting in an impingement at virtually zero angle of attack. Periodically, in the absence of impinging wakes, the laminar suction side boundary layer separates in the adverse pressure gradient region. Flow in the laminar separation bubble is found to undergo transition via a Kelvin–Helmholtz instability. Subsequent impingement of the wake inhibits separation and thus promotes boundary layer reattachment. LES provides a fair reproduction of the DNS results both in terms of instantaneous, phase-averaged, and time-averaged flow fields with a considerable reduction in computational effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The highly turbulent flow occurring inside gas-turbine combustors requires accurate simulation of scalar mixing if CFD methods are to be used with confidence in design. This has motivated the present paper, which describes the implementation of a passive scalar transport equation into an LES code, including assessment/testing of alternative discretisation schemes to avoid over/undershoots and excessive smoothing. Both second order accurate TVD and higher order accurate DRP schemes are assessed. The best performance is displayed by a DRP method, but this is only true on fine meshes; it produces similar (or larger) errors to a TVD scheme on coarser meshes, and the TVD approach has been retained for LES applications. The unsteady scalar mixing performance of the LES code is validated against published DNS data for a slightly heated channel flow. Excellent agreement between the current LES predictions and DNS data is obtained, for both velocity and scalar statistics. Finally, the developed methodology is applied to scalar transport in a confined co-axial jet mixing flow, for which experimental data are available. Agreement with statistically averaged fields for both velocity and scalar, is demonstrated to be very good, and a considerable improvement over the standard eddy viscosity RANS approach. Illustrations are presented of predicted time-resolved information e.g. time histories, and scalar pdf predictions. The LES results are shown, even using a simple Smagorinsky SGS model, to predict (correctly) lower values of the turbulent Prandtl number in the free shear regions of the flow, compared to higher values in the wall-affected regions. The ability to predict turbulent Prandtl number variations (rather than input these as in combustor RANS CFD models) is an important and promising feature of the LES approach for combustor flow simulation since it is known to be important in determining combustor exit temperature traverse.  相似文献   

20.
We investigate the performance of unsteady Reynolds-averaged Navier–Stokes (URANS) computation and various versions of detached eddy simulation (DES) in resolving coherent structures in turbulent flow around two cubes mounted in tandem on a flat plate at Reynolds number (Re) of 22,000 and for a thin incoming boundary layer. Calculations are carried out using four different coherent structure resolving turbulence models: (1) URANS with the Spalart–Allmaras model; (2) the standard DES [Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R., 1997. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z., (Eds.), Advances in DNS/LES. Greyden Press, Columbus, OH]; (3) the Delayed DES (DDES); and (4) the DES with a low-Re modification (DES-LR) [Spalart, P., Deck, S., Shur, M., Squires, K., Strelets, M., Travin, A., 2006. A new version of detached eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20 (3), 181–195]. The grid sensitivity of the computed solutions is examined by carrying out simulations on two successively refined grids. The computed results for all cases are compared with the experimental measurements of Martinuzzi and Havel [Martinuzzi, R., Havel, B., 2000. Turbulent flow around two interfering surface-mounted cubic obstacles in tandem arrangement. ASME J. Fluids Eng. 122, 24–31] for two different cube spacings. All turbulence models reproduce essentially identical separation of the approach thin boundary layer and yield an unsteady horseshoe vortex system consisting of multiple vortices in the leading edge region of the upstream cube. Significant discrepancies between the URANS and all DES solutions are observed, however, in other regions of interest such as the shear layers emanating from the cubes, the inter-cube gap and the downstream wake. Regardless of the grid refinement, URANS fails to capture key features of the mean flow, including the second horseshoe vortex in the upstream junction and recirculating flow on the top surface of the downstream cube for the large cube spacing, and underestimates significantly turbulence statistics in most regions of the flow for both cases. On the coarse mesh, all three DES approaches appear to yield very similar results and fail to reproduce the second horseshoe vortex. The standard DES and DDES solutions obtained on the fine meshes are essentially identical and both suffer from premature switching to unresolved DNS, due to the mis-interpretation of grid refinement as wall proximity, which leads to spurious vortices in the inter-cube region. Numerical solutions show that the low-Re modification (DES-LR) is critical prerequisite in DES on the ambiguously fine – not fine enough for full LES – mesh to prevent excessive nonlinear drop of the subgrid eddy viscosity in low cell-Re regions like in the inter-obstacle gap. Mean flow quantities and turbulence statistics obtained with DES-LR on the fine mesh are in good overall agreement with the measurements in most regions of interest for both cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号