首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.  相似文献   

2.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.   相似文献   

3.
On the basis of the mesoscopic theory of Boltzmann-type velocity distribution function, the modified Boltzmann model equation describing the one-dimensional gas flows from various flow regimes is presented by incorporating the molecular interaction models relating to the viscosity and diffusion cross-sections, density, temperature and the dependent exponent of viscosity into the molecular collision frequency. The gas-kinetic numerical method for directly solving the molecular velocity distribution function is studied by introducing the reduced distribution functions and the discrete velocity ordinate method, in which the unsteady time-splitting method and the NND finite difference scheme are applied. To study the inner flows of non-equilibrium shock wave structures, the one-dimensional unsteady shock-tube problems with various Knudsen numbers and the steady shock wave problems at different Mach numbers are numerically simulated. The computed results are found to give good agreement with the theoretical, DSMC and experimental results. The computing practice has confirmed the good precision and reliability of the gas-kinetic numerical algorithm in solving the highly nonequilibrium shock wave disturbances from various flow regimes.  相似文献   

4.
A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes can be presented on the basis of the kinetic Boltzmann–Shakhov model equation. The gas-kinetic finite-difference schemes for the velocity distribution function are constructed by developing a discrete velocity ordinate method of gas kinetic theory and an unsteady time-splitting technique from computational fluid dynamics. Gas-kinetic boundary conditions and numerical modeling can be established by directly manipulating on the mesoscopic velocity distribution function. A new Gauss-type discrete velocity numerical integration method can be developed and adopted to attack complex flows with different Mach numbers. HPF parallel strategy suitable for the gas-kinetic numerical method is investigated and adopted to solve three-dimensional complex problems. High Mach number flows around three-dimensional bodies are computed preliminarily with massive scale parallel. It is noteworthy and of practical importance that the HPF parallel algorithm for solving three-dimensional complex problems can be effectively developed to cover various flow regimes. On the other hand, the gas-kinetic numerical method is extended and used to study micro-channel gas flows including the classical Couette flow, the Poiseuille- channel flow and pressure-driven gas flows in two-dimensional short micro-channels. The numerical experience shows that the gas-kinetic algorithm may be a powerful tool in the numerical simulation of micro-scale gas flows occuring in the Micro-Electro-Mechanical System (MEMS). The project supported by the National Natural Science Foundation of China (90205009 and 10321002), and the National Parallel Computing Center in Beijing. The English text was polished by Yunming Chen.  相似文献   

5.
基于Boltzmann模型方程的气体运动论统一算法研究   总被引:1,自引:0,他引:1  
李志辉  张涵信 《力学进展》2005,35(4):559-576
模型方程出发,研究确立含流态控制参数可描述不同流域气体流动特征的气体分子速度分布函数方程; 研究发展气体运动论离散速度坐标法, 借助非定常时间分裂数值计算方法和NND差分格式, 结合DSMC方法关于分子运动与碰撞去耦技术, 发展直接求解速度分布函数的气体运动论耦合迭代数值格式; 研制可用于物理空间各点宏观流动取矩的离散速度数值积分方法, 由此提出一套能有效模拟稀薄流到连续流不同流域气体流动问题统一算法. 通过对不同Knudsen数下一维激波内流动、二维圆柱、三维球体绕流数值计算表明, 计算结果与有关实验数据及其它途径研究结果(如DSMC模拟值、N-S数值解)吻合较好, 证实气体运动论统一算法求解各流域气体流动问题的可行性. 尝试将统一算法进行HPF并行化程序设计, 基于对球体绕流及类``神舟'返回舱外形绕流问题进行HPF初步并行试算, 显示出统一算法具有很好的并行可扩展性, 可望建立起新型的能有效模拟各流域飞行器绕流HPF并行算法研究方向. 通过将气体运动论统一算法推广应用于微槽道流动计算研究, 已初步发展起可靠模拟二维短微槽道流动数值算法; 通过对Couette流、Poiseuille流、压力驱动的二维短槽道流数值模拟, 证实该算法对微槽道气体流动问题具有较强的模拟能力, 可望发展起基于Boltzmann模型方程能可靠模拟MEMS微流动问题气体运动论数值计算方法研究途径.   相似文献   

6.
基于玻尔兹曼模型方程的气体运动论统一算法(gas kinetic unified algorithm,GKUA) 给出了一种能模拟从连续流到自由分子流跨流域空气动力学问题的途径. 该算法采用传统计算流体力学技术将分子运动和碰撞解耦处理,若采用显式格式将受格式稳定条件限制,在模拟超声速流动尤其是近连续流和连续流区的流动时计算效率较低. 为了提高计算效率,扩展其工程实用性,采用上下对称高斯-赛德尔(LU-SGS) 方法和有限体积法构造了求解玻尔兹曼模型方程的隐式方法,同时在物理空间采用能处理任意连接关系的多块对接网格技术. 通过模拟近连续过渡区并排圆柱绕流问题,计算结果与直接模拟蒙特卡洛方法模拟值吻合较好,验证了该方法用于跨流域空气动力计算的可靠性与可行性.   相似文献   

7.
Based on the Bhatnagar–Gross–Krook (BGK) Boltzmann model equation, the unified simplified velocity distribution function equation adapted to various flow regimes can be presented. The reduced velocity distribution functions and the discrete velocity ordinate method are developed and applied to remove the velocity space dependency of the distribution function, and then the distribution function equations will be cast into hyperbolic conservation laws form with non‐linear source terms. Based on the unsteady time‐splitting technique and the non‐oscillatory, containing no free parameters, and dissipative (NND) finite‐difference method, the gas kinetic finite‐difference second‐order scheme is constructed for the computation of the discrete velocity distribution functions. The discrete velocity numerical quadrature methods are developed to evaluate the macroscopic flow parameters at each point in the physical space. As a result, a unified simplified gas kinetic algorithm for the gas dynamical problems from various flow regimes is developed. To test the reliability of the present numerical method, the one‐dimensional shock‐tube problems and the flows past two‐dimensional circular cylinder with various Knudsen numbers are simulated. The computations of the related flows indicate that both high resolution of the flow fields and good qualitative agreement with the theoretical, DSMC and experimental results can be obtained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Several kinds of explicit and implicit finite-difference schemes directly solving the discretized velocity distribution functions are designed with precision of different orders by analyzing the inner characteristics of the gas-kinetic numerical algorithm for Boltzmann model equation. The peculiar flow phenomena and mechanism from various flow regimes are revealed in the numerical simulations of the unsteady Sod shock-tube problems and the two-dimensional channel flows with different Knudsen numbers. The numerical remainder-effects of the difference schemes are investigated aad analyzed based on the computed results. The ways of improving the computational efficiency of the gaskinetic numerical method and the computing principles of difference discretization are discussed.  相似文献   

9.
气体运动论数值算法在微槽道流中的应用研究   总被引:1,自引:1,他引:1  
简要介绍基于Boltzmann模型方程的气体运动论数值算法基本思想及其对二维微槽道流动问题数值计算的推广,并阐述适用于微尺度流动问题的气体运动论边界条件数值处理方法。通过对压力驱动的二维微槽道流动问题进行数值模拟,将不同Knudsen数下的微槽道流计算结果分别与有关DSMC模拟值和经滑移流理论修正的N—S方程解进行比较分析,表明基于Boltzmann模型方程的气体运动论数值算法对微槽道气体流动问题具有很好的模拟能力。  相似文献   

10.
气体动理学格式研究进展   总被引:4,自引:0,他引:4  
李启兵  徐昆 《力学进展》2012,42(5):522-537
介绍了近年来气体动理学格式(gas-kinetic scheme, GKS, 亦简称BGK 格式) 的主要研究进展, 重点是高阶精度动理学格式及适合从连续流到稀薄流全流域的统一动理学格式. 通过对速度分布函数的高阶展开和对初值的高阶重构, 构造了时间和空间均为三阶精度的气体动理学格式. 研究表明, 相比于传统的基于Riemann 解的高阶格式, 新格式不仅考虑了网格单元界面上物理量的高阶重构, 而且在初始场的演化阶段耦合了流体的对流和黏性扩散, 也能够保证解的高阶精度. 该研究为高精度计算流体力学(computatial uiddymamics, CFD) 格式的建立提供了一条新的途径. 通过分子离散速度空间直接求解Boltzmann 模型方程,在每个时间步长内将宏观量的更新和微观气体分布函数的更新紧密地耦合在一起, 建立了适合任意Knudsen(kn) 数的统一格式, 相比于已有的直接离散格式具有更高的求解效率. 最后, 本文还讨论了合理的物理模型对数值方法的重要性. 气体动理学方法的良好性能来自于Boltzmann 模型方程对计算网格单元界面上初始间断的时间演化的准确描述. 气体自由运动与碰撞过程的耦合是十分必要的. 通过分析数值激波层内的耗散机制,我们认识到采用Euler 方程的精确Riemann 解作为现代可压缩CFD 方法的基础具有根本的缺陷, 高马赫数下的激波失稳现象不可避免. 气体动理学格式为构造数值激波结构提供了一个重要的可供参考的物理机制.   相似文献   

11.
稀薄流到连续流的气体运动论模型方程算法研究   总被引:10,自引:0,他引:10  
李志辉  张涵信 《力学学报》2002,34(2):145-155
通过引入碰撞松弛参数和当地平衡态分布函数对BGK模型方程进行修正,确定含流态控制参数可描述不同流域气体流动特性的气体分子速度分布函数的简化控制方程。发展和应用离散速度坐标法于气体分子速度空间,利用一套在物理空间和时间上连续而速度空间离散的分布函数来代替原分布函数对速度空间的连续依赖性。基于非定常时间分裂数值计算方法和无波动、无自由参数的NND耗散差分格式,建立直接求解气体分子速度分布函数的气体运动论有限差分数值方法。推广应用改进的Gauss-Hermite无穷积分法和华罗庚-王元提出的以单和逼近重积分的黄金分割数论积分方法等,对离散速度空间进行宏观取矩获取物理空间各点的气体流动参数,由此发展一套从稀薄流到连续流各流域统一的气体运动论数值算法。通过对不同Knudsen数下一维激波管问题、二维圆柱绕流和三维球体绕流的初步数值实验表明文中发展的数值算法是可行的。  相似文献   

12.
Compressible flows exhibit a diverse set of behaviors, where individual particle transports and their collective dynamics play different roles at different scales. At the same time, the atmosphere is composed of different components that require additional degrees of freedom for representation in computational fluid dynamics. It is challenging to construct an accurate and efficient numerical algorithm to faithfully represent multiscale flow physics across different regimes. In this paper, a unified gas-kinetic scheme(UGKS) is developed to study non-equilibrium multicomponent gaseous flows. Based on the Boltzmann kinetic equation, an analytical space-time evolving solution is used to construct the discretized equations of gas dynamics directly according to cell size and scales of time steps, i.e., the so-called direct modeling method. With the variation in the ratio of the numerical time step to the local particle collision time(or the cell size to the local particle mean free path), the UGKS automatically recovers all scale-dependent flows over the given domain and provides a continuous spectrum of the gas dynamics. The performance of the proposed unified scheme is fully validated through numerical experiments.The UGKS can be a valuable tool to study multiscale and multicomponent flow physics.  相似文献   

13.
从一般非线性Bo ltzm ann方程出发,发展并实现了一套适于大范围K nudsen数稀薄流问题数值模拟的统一算法。采用BGK模型和Shakov模型近似碰撞项,进而引入两个二速度无量纲简化分布函数,通过关于分子速度第三分量取矩积分,将三速度单一模型方程变换为二速度微分方程组。基于G auss-H erm ite积分公式和正交多项式G auss积分公式,借助离散速度坐标法消除简化模型方程对分子速度空间的连续依赖性,从相空间到物理空间得到一组带源项双曲守恒离散方程,并给出其显式和隐式二阶迎风TVD有限差分解。以二维圆柱A r气体超声速绕流算例,验证了数值算法的有效性,比较分析了漫反射和镜面反射两种气体分子壁面反射模型的计算结果。  相似文献   

14.
In the conventional discrete velocity method (DVM), the local solution of collisionless Boltzmann equation with a piecewise constant distribution for the distribution function is utilized to reconstruct distribution function at the cell interface and then calculate numerical flux of Boltzmann equation for updating the distribution function at cell center. In this process, a numerical dissipation will be introduced into the solution due to neglecting of the collision effect at the cell interface. This numerical dissipation may deteriorate the solution accuracy of conventional DVM in the continuum flow regime, in which the particle collision happens frequently. To overcome this defect, two improved schemes are first presented in this work, in which the local discrete solution of Boltzmann equation with Shakhov model is adopted to evaluate the distribution function at the cell interface, while the equilibrium state of the local solution is computed by different ways. One of the improved schemes evaluates the equilibrium state exactly by the moments of distribution functions according to the compatibility condition, while the other computes the equilibrium state approximately by a simple average at the cell interface. Since the collision effect is incorporated in evaluation of numerical flux, the improved schemes can provide reasonable solutions in all flow regimes. On the other hand, they introduce some extra computational efforts for determining the collision term at the cell interface as compared with the conventional DVM. To assess the performance of different methods for simulation of flows in all flow regimes, a comprehensive study is then carried out in this work.  相似文献   

15.
The accuracy of model kinetic equations is analyzed using the exact moment solutions of the Boltzmann–Maxwell equation for homoenergetic affine flows of a monatomic gas of Maxwellian molecules in the absence of external forces. Solutions of the third-order kinetic-moment equations for homogeneous shear flow and one-dimensional homogeneous expansion-collapse flow are considered. The principal advantages of the domestic Shakhov and, especially, Larina–Rykov models are demonstrated.  相似文献   

16.
A model kinetic equation approximating the Boltzmann equation on a wide range of the intensities of nonequilibrium states of gases is derived to describe rarefied gas flows. The kinetic model is based on a distribution function dependent on the absolute velocity of gas particles. Themodel kinetic equation possesses a high computational efficiency and the problem of shock wave structure is solved on its basis. The calculated and experimental data for argon are compared.  相似文献   

17.
临近空间飞行器因各部件尺寸差异较大, 在高空高马赫数条件下飞行会出现多流区共存的多尺度复杂非平衡流动现象, 流场中的气体分子速度分布函数与当地位置、流场分子速度、气体密度、流动速度、温度、热流矢量、应力张量等相关. 通过分析玻尔兹曼方程的一阶查普曼?恩斯科近似解, 构造了一种同时考虑热流矢量和应力张量影响、满足玻尔兹曼方程高阶碰撞矩的跨流域统一可计算模型方程, 并在数学上分析了其守恒性、H定理等基本属性, 证明了新模型方程与玻尔兹曼方程的相容性, 给出了新模型与现有模型如沙克霍夫(Shakhov)模型等的递进关系, 基于碰撞动力学确定了各流域统一气体分子碰撞松弛参数表达式. 在气体动理论统一算法中采用新建模型及现有模型模拟了一维激波结构、二维近空间飞行环境平板和多体圆柱干扰流动, 并与直接模拟蒙特卡洛方法对比分析, 结果表明在流场中粘性效应显著的区域新建模型能更好地捕捉激波位置, 尤其是在激波内部新模型模拟的宏观参数分布与直接模拟蒙特卡洛方法结果符合更好, 验证了新模型的有效性和可靠性, 同时说明在非平衡显著的流动区域碰撞松弛模型受多参数共同作用的影响.   相似文献   

18.
统一气体动理论格式UGKS(Unified Gas-Kinetic Scheme)是一种适用于从连续流到自由分子流的全流域计算格式。在该格式中一般使用统一的离散速度空间。而在高速流动中,不同节点的分布函数往往差异很大。为了保证计算的精度,离散速度空间必须满足所有节点的需要,占用了大量的内存。采用局部的均匀离散速度空间,离散速度的范围随节点状态的变化而变化,从而降低了内存的需要,并通过引入背景网格避免了不同节点离散速度的插值。最后,通过两个一维算例对该方法进行了测试。测试结果显示,采用局部离散速度空间能够得到可靠的结果,并且在模拟高速流动时计算效率明显提高。  相似文献   

19.
The action of resonance IR laser radiation on a molecular gas leads, at high-power absorption intensity, to a breakdown in the equilibrium (Boltzmann) energy distribution in the internal degrees of freedom [1]. Under realistic conditions, molecular gases usually are (due to small amounts of impurities or isotopic components) multicomponent systems. In this case resonance IR laser radiation (or other methods of selective action), disturbing the distribution function of the primary gas, does not interact directly with impurities. The problem thus arises of determining the distribution function of the impurity gas interacting with the nonequilibrium (non-Boltzmann) thermostat. The present paper, devoted to the solution of this problem, treats the distribution function of harmonic oscillators A, consisting of a small amount of impurities in a system of harmonic oscillators B with given nonequilibrium distribution functions of vibrational energy. The behavior of a system in a nonequilibrium thermostat was first considered in [2, 3] where, as well as in [4, 5], it was shown that in a non-Maxwellian thermostat with a small amount of harmonic oscillator impurities, a Boltzmann distribution in harmonic oscillator vibrational energies is established under stationary conditions, with a temperature differing from the gas-kinetic temperature of the thermostat, defined in terms of the mean-square velocity. The behavior of a small amount of impurities (heavy monoatomic particles and harmonic oscillators) in a non-Maxwellian thermostat of a light gas was further investigated in [6–8]. Unlike the papers mentioned, the present one considers the behavior of a small amount of harmonic oscillator impurities in a thermostat with a Maxwellian velocity distribution and with a nonequilibrium (non-Boltzmann) distribution in vibrational energies.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 3–10, September–October, 1978.  相似文献   

20.
A set of linearized 26 moment equations, along with their wall boundary conditions, are derived and used to study low-speed gas flows dominated by Knudsen layers. Analytical solutions are obtained for Kramers’ defect velocity and the velocity-slip coefficient. These results are compared to the numerical solution of the BGK kinetic equation. From the analysis, a new effective viscosity model for the Navier–Stokes equations is proposed. In addition, an analytical expression for the velocity field in planar pressure-driven Poiseuille flow is derived. The mass flow rate obtained from integrating the velocity profile shows good agreement with the results from the numerical solution of the linearized Boltzmann equation. These results are good for Knudsen numbers up to 3 and for a wide range of accommodation coefficients. The Knudsen minimum phenomenon is also well captured by the present linearized 26-moment equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号