首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Study of the shock-induced acceleration of hexane droplets   总被引:2,自引:0,他引:2  
An experimental study of the interaction of a shock wave with a hexane droplet is presented. The main goal of the experiments was to record images of the process and measure basic parameters describing movement, dispersion and evaporation of the droplets engulfed by a shock wave propagating in air. A shock tube with a visualization section was used for this research. Photography of the process allowed one to measure the positions, velocities and sizes of mist clouds created by the interaction processes. Analysis of the pictures shows that there is no qualitative difference between cases for different size droplets, but shock Mach number had a significant effect on the process. Quantitative analysis shows that under certain conditions, a catastrophic breakup mechanism of dispersion occurred. The droplets are shattered into a mist cloud before they achieve mechanical equilibrium with the surrounding gas. The approximate time for the complete dispersion and acceleration of the fuel droplet varies from 300 to 500 μs, and depends both on the droplet diameter and shock velocity. The dispersion time is controlled principally by the droplet diameter, and to a lesser extent, the shock Mach number. This paper is based on work that was presented at the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, Canada, July 31–August 5, 2005.  相似文献   

2.
This paper presents an experimental study of vertically traveling droplet packets, where the droplets in each packet are aligned linearly, one behind another. The paper describes in detail, an experimental apparatus that produces repeatable, linearly aligned, and isolated droplet packets containing 1–6 droplets per packet. The apparatus is suitable for examining aerodynamic interactions between droplets within each packet. This paper demonstrates the performance of the apparatus by examining the drag reduction and collision of droplets traveling in the wake of a lead droplet. Comparison of a calculated single droplet trajectory with the detailed droplet position versus time data for a droplet packet provides the average drag reduction experienced by the trailing droplets due to the aerodynamic wake of the lead droplet. For the conditions of our experiment (4 droplet packet, 145 m methanol droplets, 10 m/s initial velocity, initial droplet spacing of 5.2 droplet diameters, Reynolds number approx. 80) the average drag on the first trailing droplet was found to be 75% of the drag on the lead droplet.  相似文献   

3.
The structure of the relaxation zone behind a shock wave of moderate strength in a mixture of gas, vapour and droplets is analysed. A model is presented for shock induced evaporation, which is based on wet-bulb equilibrium and on the absence of relative motion between droplets and gas. Experimental and numerical data on heterogeneous condensation induced by an unsteady rarefaction wave and on re-evaporation due to shock wave passage are reported for a mixture of water vapour, nitrogen gas and condensation nuclei. Pressure, temperature, saturation ratio and droplet size are experimentally obtained and are very well predicted by a numerical simulation based on the non-linear quasisteady wet-bulb model for phase transition, as well for the expansion wave as for the shock wave. During expansion, droplet number density decays much faster than predicted, which is not yet satisfactorily explained. Shock induced droplet evaporation is studied for post-shock saturation ratios ranging from 5×10–3 to 0.2, corresponding to shock Mach numbers of 1.2 to 1.9. The evaporation times are well predicted by the theoretical model. No evidence is found for droplet break-up for Weber numbers up to 13, and droplet radii of the order of 1m.On leave at Institute of Fluid Science, Shock Wave Research Center, Tohoku University, Sendai 980, JapanThis article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

4.
Dispersed water droplets are often seen in environmental air flows in rain, cloud, mist, sea spray and so on. It is therefore of great importance to precisely estimate heat transfer between water droplets and atmospheric air in developing a reliable climate model. The purpose of this study is to fabricate the measurement system for the temperature of a small water droplet in air flow under the controlled relative humidity condition and to investigate the effect of relative humidity on heat transfer across the surface of an evaporating water droplet in air flow. The results show that the droplet temperature decreases in the low-relative-humidity condition, whereas it increases in the high-relative-humidity condition. Nusselt number on the droplet surface is not affected by the relative humidity.  相似文献   

5.
A model is presented for the droplet evaporation process induced by a shock wave propagating in a fog. The model is based on the existence of a quasi-steady wet bulb state of the droplets during evaporation. It is shown that for moderate shock strength, Ma = < 2, and droplet radii in the range of 1–5 the, the major part of the evaporation process is governed by a balance between heat conduction and vapour diffusion. The formation of a fog by means of an unsteady adiabatic expansion of humid nitrogen is described. Experimental results of shock induced evaporation are shown for shock Mach numbers from 1.2 to 2.1, droplet mass fraction of 5 · 10-3, and initial droplet radii of 1–1.4 m. The expected linear relation between droplet radius squared and time during evaporation is observed. Characteristic evaporation times appear to be strongly dependent on shock strength. A variation of about two decades, predicted by theory, was experimentally observed for the Mach number range studied.  相似文献   

6.
7.
IntroductionOptimizationofvariousthermalpowerdevices (steamgenerators,heatexchangers ,etc .)anddevelopmentofthinfilmtechnologies(forexample ,withtheuseoftwo_phasejets)promptsmathematicalmodelingofnear_wallflowsofgas_dropletmixtures .Duetothegreatdiversityin…  相似文献   

8.
Attenuation of a shock wave passing through a cloud of water droplets   总被引:2,自引:0,他引:2  
The mitigation of a planar shock wave caused by a cloud of calibrated water droplets was studied both experimentally and numerically. Experiments were carried out, with different shock wave Mach numbers ranging from 1.1 to 1.8, in a vertical shock tube coupled with a droplet generator which produced a well-characterized cloud of droplets of 120, 250 and 500 μm in diameter. By exploiting such an experimental set-up, we successfully measured the attenuation of a normal shock wave when passing through the water droplet cloud. This series of experiments allowed to identify the main parameters of this investigation and a clear dependence between the attenuation of the shock wave and terms governing the regimes of droplet breakup has been found. On the other hand, to support this experimental approach, 1D unsteady calculations were performed in similar configurations. Although the mathematical model based on an Eulerian/Eulerian approach was actually incomplete, the first comparisons between the experiments and the simulations were rather interesting and pointed out the need to improve the physical model, by taking into account the fragmentation and the vaporization of the droplets submitted to the shock wave as well as the size distribution of the water spray.  相似文献   

9.
为分析液滴对舰船舱内爆炸冲击波的耗散与衰减作用,通过有限元分析方法,建立冲击波作用于不同尺寸单个液滴和多排液滴的模型,分析冲击波与单个及多个液滴的作用过程及液滴形态变化,对冲击波衰减规律进行分析总结。得到结论如下:单个液滴模型中,小液滴破碎更迅速,破碎的规律性强;大液滴抛撒现象发生较早,抛撒出的小液滴数目多,但整体变化规律性偏差;不同尺寸单个液滴对冲击波有一定的衰减作用,衰减率随液滴尺寸增大而增大,线性规律较明显;成排液滴对冲击波有明显的衰减作用,相同液滴密度下衰减率随着液滴数量的增多而增大,呈现明显的线性特性。  相似文献   

10.
A study has been made of the propagation of a shock wave in dry polyhedral foam with cell diameter 1 cm. The experiments were made in a shock tube in the range of Mach numbers M < 1.4 of the shock wave. The interaction of the shock wave with the foam was photographed. This established that the destruction of the foam by the shock wave leads to the formation of a gas-droplet flow behind the shock front. To determine the parameters of the suspension, the flow was probed by He-Ne lasers with different radiation wavelengths. The spectral-transparency method was used to find the modal diameter of the droplets of the gas suspension and the volume concentration of the droplets in the flow. The modal diameter of the droplets was 2m, and the volume concentration of the droplets decreased downstream.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 134–141, May–June, 1993.  相似文献   

11.
The drag of non-evaporating, spherical, liquid droplets was measured in turbulent flow fields at parametric ranges relevant to spray combustion, characterized by the droplet Reynolds number, and the intensity and spatial scales of turbulence. The experimental apparatus comprised a wind-tunnel and a piezo-electric droplet generator. The procedure was to inject water droplets of uniform size co-currently and continuously with vertical turbulent air flows while droplet velocity was measured at different elevations using laser-Doppler velocimetry. Turbulence was characterized using hot-wire anemometry prior to droplet injection. Drag coefficients were calculated using these main measurements and the law of conservation of mechanical energy. Reynolds numbers were investigated in the range 10–100, in terms of the equivalent spherical diameter of a droplet, and the mean relative speed between the ambient gaseous field and the droplets. Weber numbers were much less than unity so droplets were effectively spherical. Relative intensities of turbulence were investigated in the range 20–65 percent, in terms of the mean relative speed. Spatial scales of turbulence were large in comparison to the droplets; the ratio between the spatial integral scale and the droplet diameter was in the range 11–38, and the Kolmogorov scale was comparable in size or smaller than the droplet diameter. Experimental data showed that the drag in turbulent fields under these conditions is not significantly different than that of solid spheres in a quiescent field at the same Reynolds number.The financial support of the Natural Sciences and Engineering Research Council of Canada and the Manufacturing Research Corporation of Ontario is gratefully acknowledged.  相似文献   

12.
An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20–50°C using a capillary tube and d/dT was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of d/dT. The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).For short times after injection, the droplets were driven by this flow towards the hot wall above the matched-density temperature until the droplets reached a point where the forces due to the flow and buoyancy were equal. After longer times, the droplets moved to the cold side due to suspected density changes caused by mass transfer from the droplets to the silicone oil. This was confirmed by tests under isothermal conditions, where it was observed that droplets of all sizes fell to the cold bottom eventually.Thus, even though the thermocapillary flow inside the droplets persisted for long times in spite of the mass transfer, the migration of droplets towards the hot side was eventually affected by uncontrolled buoyancy forces resulting from density changes due to mass transfer. While additional liquids are being tried, it is suggested from the present experience that reduced gravity experiments will probably be necessary to provide unambiguous data for the migration of droplets.  相似文献   

13.
14.
This paper presents numerical results for combined convection and radiation heat transfer to a laminar mist flow in the thermal entrance region of a concentric annulus with a heated core at constant wall temperature and an insulated outer wall. The saturated droplets in the mist flow are considered as equivalent heat sinks distributed in the superheated vapor stream. Numerical calculations are performed for the variations of droplet size, mean vapor velocity, and the local Nusselt number in the streamwise direction until the single-phase fully-developed condition is reached. The important role of the saturated droplets on combined convection and radiation heat transfer to mist flow is clearly demonstrated.
Kombinierte Wärmeübertragung durch Konvektion und Strahlung im thermischen Einlauf einer laminaren Tröpfchenströmung in einem konzentrischen Ringspalt
Zusammenfassung Dieser Artikel stellt numerische Ergebnisse für kombinierte Wärmeübertragung durch Konvektion und Strahlung im thermischen Einlauf einer laminaren Tröpfchenströmung in einem konzentrischen Ringraum mit beheiztem Kern bei konstanter Wandtemperatur und isolierter Außenwand dar. Die gesättigten Tröpfchen wirken als verteilte Wärmesenken im überhitzten Dampfstrom. Numerische Berechnungen werden unter Variation des Tröpfchendurchmessers, der durchschnittlichen Dampfgeschwindigkeit und der Nusselt-Zahl durchgeführt, bis eine einphasige vollausgebildete Strömung erreicht ist. Der wichtige Einfluß der gesättigten Tröpfchen auf die kombinierte Wärmeübertragung durch Konvektion und Strahlung wird klar gezeigt.

Nomenclature A liquid loading parameter, defined in Eq. (3) - A d heat transfer area of droplets per unit volume of vapor - A w heat transfer area of heated wall per unit volume of vapor - C wall superheat parameter, defined in Eq. (5) - C p specific heat of vapor - D dimensionless droplet diameter,d/d 0 - D h hydraulic diameter, 2(r 0r i) - d droplet diameter - d 0 droplet diameter at thermal entrance (x=0) - E dimensionless parameter, defined in Eq. (6) - H dimensionless parameter, defined in Eq. (7) - F w–d geometric view factor - h d heat transfer coefficient for evaporating droplets - h p0 heat transfer coefficient of non-evaporating droplet or solid sphere with diameter ofd 0 - k thermal conductivity of vapor - n droplet number density (number of droplets per unit volume of vapor) - n 0 droplet number density at thermal entrance (x=0) - Nu x local Nusselt number, defined by Eq. (17) - Pr Prandtl number of vapor,C p/k - Q r radiative heat transfer to droplets (per unit volume of vapor) - q w heat flux at the inner wall - R dimensionless radial position,r/r i - Re Reynolds number of vapor, 2 v V0 r i/ - r radial position - r i radius of inner tube - r o radius of outer tube - S heat sink parameter, defined in Eq. (4) - T temperature of vapor - T m bulk mean temperature of vapor - T s saturated temperature - T w inner wall temperature - V mean vapor velocity - V fully-developed vapor velocity, given in Eq. (12) - V 0 mean vapor velocity atx=0 - x axial position in thermal entrance region - X dimensionless axial position, (x/r i)/(Re·Pr) - z 0 flow quality atx=0 Greek symbols 0 vapor void fraction atx=0 - ratio of radius,r i/r0 - d emissivity of droplets - w emissivity of inner heated wall - dimensionless vapor temperature, defined in Eq. (9) - m dimensionless vapor mean temperature, given by Eq. (14) - wi dimensionless inner wall temperature - wo dimensionless outer wall temperature - dynamic viscosity of vapor - l liquid density - v vapor density - Stefan-Boltzmann constant  相似文献   

15.
We describe a highly-detailed experimental characterization of the Richtmyer-Meshkov instability (the impulsively driven Rayleigh-Taylor instability) (Meshkov 1969; Richtmyer 1960). In our experiment, a vertical curtain of heavy gas (SF6) flows into the test section of an air-filled, horizontal shock tube. The instability evolves after a Mach 1.2 shock passes through the curtain. For visualization, we pre-mix the SF6 with a small (∼10−5) volume fraction of sub-micron-sized glycol/water droplets. A horizontal section of the flow is illuminated by a light sheet produced by a combination of a customized, burst-mode Nd:YAG laser and a commercial pulsed laser. Three CCD cameras are employed in visualization. The “dynamic imaging camera” images the entire test section, but does not detect the individual droplets. It produces a sequence of instantaneous images of local droplet concentration, which in the post-shock flow is proportional to density. The gas curtain is convected out of the test section about 1 ms after the shock passes through the curtain. A second camera images the initial conditions with high resolution, since the initial conditions vary from test to test. The third camera, “PIV camera,” has a spatial resolution sufficient to detect the individual droplets in the light sheet. Images from this camera are interrogated using Particle Image Velocimetry (PIV) to recover instantaneous snapshots of the velocity field in a small (19 × 14 mm) field of view. The fidelity of the flow-seeding technique for density-field acquisition and the reliability of the PIV technique are both quantified in this paper. In combination with wide-field density data, PIV measurements give us additional physical insight into the evolution of the Richtmyer-Meshkov instability in a problem which serves as an excellent test case for general transition-to-turbulence studies. Received: 26 June 1999/Accepted: 29 October 1999  相似文献   

16.
Turbulent combustion of mono-disperse droplet-mist has been analysed based on three-dimensional Direct Numerical Simulations (DNS) in canonical configuration under decaying turbulence for a range of different values of droplet equivalence ratio (?d), droplet diameter (ad) and root-mean-square value of turbulent velocity (u). The fuel is supplied in liquid phase and the evaporation of droplets gives rise to gaseous fuel for the flame propagation into the droplet-mist. It has been found that initial droplet diameter, turbulence intensity and droplet equivalence ratio can have significant influences on the volume-integrated burning rate, flame surface area and burning rate per unit area. The droplets are found to evaporate predominantly in the preheat zone, but some droplets penetrate the flame front, reaching the burned gas side where they evaporate and some of the resulting fuel vapour diffuses back towards the flame front. The combustion process in gaseous phase takes place predominantly in fuel-lean mode even for ?d > 1. The probability of finding fuel-lean mixture increases with increasing initial droplet diameter because of slower evaporation of larger droplets and this predominantly fuel-lean mode of combustion exhibits the attributes of low Damköhler number combustion and gives rise to thickening of flame with increasing droplet diameter. The chemical reaction is found to take place under both premixed and non-premixed modes of combustion and the relative contribution of non-premixed combustion to overall heat release increases with increasing droplet size. The statistical behaviours of the flame propagation and mode of combustion have been analysed in detail and detailed physical explanations have been provided for the observed behaviour.  相似文献   

17.
宋家喜  潘书诚 《力学学报》2022,54(9):2419-2434
本文采用守恒清晰界面多相流数值方法模拟了超声速和高超声速环境下三维液滴的推进、变形和破碎演化过程.数值模拟结果与实验数据的一致性表明了本文所用数值方法和计算程序的准确性, 而网格无关性研究验证了采用的网格分辨率可以捕捉流场和界面的主要特征. 模拟结果验证了高韦伯数下液滴变形破碎过程所遵循的剪切诱导剥离(SIE)破碎机制, 其包含液滴的扁平化和剪切剥离两个主要特征. 而最近发现的SIE破碎机制下的循环破碎机制也在本文得到了验证, 即主液滴从球形液滴破碎为小液滴会经历多个循环重复的破碎阶段, 高韦伯数下液滴的破碎并非一次性剪切剥离的结果, 而是会发生逐层的剪切剥离和破碎. 本文还研究了马赫数对激波冲击液滴加速变形过程的影响. 结果表明, 高韦伯数下不同马赫数的液滴破碎过程具有高度一致性, 并遵循统一的SIE破碎机制.通过对液滴质心位移、速度、加速度和拽力系数的量化统计揭示其运动过程中的统一加速规律. 在激波的驱动下, 液滴并非以一个恒定的加速度做加速运动.在扁平化不明显的前期, 液滴以一个恒定的加速度做加速运动.随着液滴扁平化的发生, 迎风面积的增加导致拽力系数的增大, 进而导致液滴加速度的不断增大.   相似文献   

18.
The effects of grid-generated velocity fluctuations on the primary atomization and subsequent droplet deformation of a range of laminar liquid jets are examined using microscopic high-speed backlit imaging of the break-up zone and laser Doppler anemometry of the gas phase separately. This is done for fixed gas mean flow conditions in a miniature wind tunnel experiment utilizing a selection of fuels, turbulence-generating grids and two syringe sizes. The constant mean flow allows for an isolated study of velocity fluctuation effects on primary atomization in a close approximation to homogeneous decaying turbulence. The qualitative morphology of the primary break-up region is examined over a range of turbulence intensities, and spectral analysis is performed in order to ascertain the break-up frequency which, for a case of no grid, compares well with the existing literature. The addition of velocity fluctuations tends to randomize the break-up process. Slightly downstream of the break-up region, image processing is conducted in order to extract a number of metrics, which do not depend on droplet sphericity, and these include droplet aspect ratio and orientation, the latter quantity being somewhat unconventional in spray characterization. A turbulent Weber number $We^{\prime}$ which takes into account gas phase fluctuations is utilized to characterize the resulting droplet shapes, in addition to a mean Weber number <We d>. Above a $We^{\prime}>0.05$ a clear positive relationship exists between the mean aspect ratio of droplets and the turbulent Weber number where $We^{\prime}$ is varied by altering all relevant variables including the velocity root mean square, the initial droplet diameter, the surface tension and the density.  相似文献   

19.
A population balance model using a standard method of moments (Sγ) in an Eulerian–Eulerian framework has been used for oil and brine two-phase flow simulations in pipelines. Results have been compared to both numerical and experimental data from the literature. The effects of the forces constituting the momentum transfer term at the interphase between droplets and the continuous phase (drag, lift, turbulent dispersion and virtual mass), turbulence modelling, break-up and coalescence parameters are analysed; they are shown to be important for droplet mean diameter evolution. It has been demonstrated that a correct combination of models and parameters improves (47% for the best case) simulated results when compared to experimental data. Interactions between the different components of the whole model are discussed and their corresponding effects on the droplet diameter predictions are explained. In particular, the addition of the lift force tends to push the droplet toward the walls of the computational domain where turbulence and shear stress are the strongest, therefore leading to an increased break-up rate. Based on the findings of this study, recommendations for further population balance-based modelling with a standard method of moments are provided.  相似文献   

20.
The results of a combined experimental and numerical study on droplet behavior within an electrohydrodynamic fine spray are presented. The fine spray exists in the transition region between the multiple cone-jet and rim emission spray modes. Experiments were conducted specifically to characterize the motion of droplets within the spray. Light-sheet visualizations and measurements of droplet speed and velocity using laser-based, single-particle counters were obtained. Additionally, a numerical simulation of the droplet motion within the spray was made and compared to the experimental results. The electrohydrodynamic fine spray of ethanol droplets ( 1 to 40 m diameter) was generated using a typical capillary-plate configuration, with a capillary tip electric field intensity of 106 V/m and a spray charge density of 70 C/m3. Acquired images of the spray revealed a zone of rapid expansion near the capillary followed by a more gradual expansion farther from the capillary. In situ laser-diagnostic measurements confirmed these observations. Measured droplet speeds decreased rapidly with increasing axial distance from the capillary, but then increased beyond the spray's axial mid-plane as a result of a change in the sign of the axial internal electric field. Droplet axial velocity components behaved similarly. The radial velocity components exhibited a maximum value off of the spray's centerline in the near-capillary region. Farther away from the capillary, they increased monotonically with increasing radial position. These trends identified the significant role that the radial internal electric field plays in spray expansion. The numerical simulation of the normal spray verified the inferred change in sign of the axial internal field and underscored the dominant contribution of the external electric field in the near-capillary region and of the internal electric field farther away.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号