首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
This paper presents a new predictive model of droplet flow and heat transfer from molten salt droplets in a direct contact heat exchanger. The process is designed to recover heat from molten CuCl in a thermochemical copper–chlorine (Cu–Cl) cycle of hydrogen production. This heat recovery occurs through the physical interaction between high temperature CuCl droplets and air. Convective heat transfer between droplets and air is analyzed in a counter-current spray flow heat exchanger. Numerical results for the variations of temperature, velocity and heat transfer rate are presented for two cases of CuCl flow. The optimal dimensions of the heat exchanger are found to be a diameter of 0.13 m, with a height of 0.6 and 0.8 m, for 1 and 0.5 mm droplet diameters, respectively. Additional results are presented and discussed for the heat transfer effectiveness and droplet solidification during heat recovery from the molten CuCl droplets.  相似文献   

2.
This study presents a two dimensional analysis of coupled heat and mass transfer during the process of pasta drying. Velocity and temperature distributions of air flowing around the pasta are predicted in steady state condition. Using these profiles and the similarity between heat and mass boundary layers, local convective heat and mass transfer coefficients were determined on different points of pasta surface. By employing these values, the solution of coupled heat and mass transfer equations within the pasta object in unsteady state condition was obtained. Furthermore the effects of operating conditions such as velocity, temperature and relative humidity of air flow on drying rate of pasta were studied. Sensitivity analysis results show that the effects of air temperature and relative humidity on the rate of drying are more important than the effect of air velocity. Finally, the results obtained from this analysis were compared with the experimental data reported in the literatures and a good agreement was observed while, no adjustable parameter is used in the presented model.  相似文献   

3.
 The transient cooling of an evaporating water droplet, suspended in a jet of dry air, was experimentally investigated in this study using thermochromic liquid crystal thermography. Microencapsulated beads of thermochromic liquid crystals, suspended in the water droplets, enabled the visualization of the transient temperature fields within the droplets. Digital movies of the convectively cooled droplets reveal spatial and temporal temperature gradients resolved down to length scales of ∼100 μm and time scales of ∼0.03 s. The transient temperature measurements were analyzed to yield total droplet convective heat transfer rates. Droplet heat transfer rates determined from a heat balance on the droplets compare favorably to previously published measurements. Received: 11 June 1997/Accepted: 26 March 1998  相似文献   

4.
This study compares experimental measurements and numerical simulations of liquid droplets over heated (to a near surface temperature of 423 K) and unheated cylinders. The numerical model is based on an unsteady Reynolds-averaged Navier–Stokes (RANS) formulation using a stochastic separated flow (SSF) approach for the droplets that includes submodels for droplet dispersion, heat and mass transfer, and impact on a solid surface. The details of the droplet impact model are presented and the model is used to simulate water spray impingement on a cylinder. Computational results are compared with experimental measurements using phase Doppler interferometry (PDI). Overall, good agreement is observed between predictions and experimental measurements of droplet mean size and velocity downstream of the cylinder.  相似文献   

5.
An experimental investigation was conducted to quantify the unsteady heat transfer and phase changing process within small icing water droplets in order to elucidate underlying physics to improve our understanding of the important micro-physical process of icing phenomena. A novel, lifetime-based molecular tagging thermometry (MTT) technique was developed and implemented to achieve temporally-and-spatially resolved temperature distribution measurements to reveal the time evolution of the unsteady heat transfer and dynamic phase changing process within micro-sized water droplets in the course of icing process. It was found that, after a water droplet impinged onto a frozen cold surface, the liquid water at the bottom of the droplet would be frozen and turned to solid ice rapidly, while the upper portion of the droplet was still in liquid state. As the time goes by, the interface between the liquid phase water and solid phase ice was found to move upward continuously with more and more liquid water within the droplet turned to solid ice. Interestingly, the averaged temperature of the remaining liquid water within the small icing droplet was found to increase, rather than decrease, continuously in the course of icing process. The temperature increase of the remaining liquid water is believed to be due to the heat release of the latent heat during solidification process. The volume expansion of the water droplet during the icing process was found to be mainly upward to cause droplet height growth rather than radial to enlarge the contact area of the droplet on the test plate. As a result, the spherical-cap-shaped water droplet was found to turn to a prolate-spheroid-shaped ice crystal with cusp-like top at the end of the icing process. The required freezing time for the water droplets to turn to ice crystals completely was found to depend on the surface temperature of the test plate strongly, which would decrease exponentially as the surface temperature of the frozen cold test plate decreases.  相似文献   

6.
Adding atomized liquid to air flowing around a cylinder gives an appreciable increase in heat transfer by forming a liquid film on the cylinder surface. The heat transfer coefficient depends upon the amount of liquid forming the film, which is limited by two phenomena: droplet deflection from the liquid film on the surface and droplets not striking the cylinder. This paper presents a method of calculating the quantity of liquid droplets settling on a cylinder surface in a gas-liquid spray flow. A coefficient k, the volume ratio of the liquid entering the film to the amount of liquid directed at the cylinder, is introduced. k values were calculated by means of numerical computation and the theory verified experimentally. The calculation method permits estimation of the dependence of the amount of liquid settling on a cylinder on the droplet diameter distribution parameters and on the linear gas velocity  相似文献   

7.
In gas turbine system with after fogging, water droplets are injected after compressor. After fogging could have more significant potential for enhancement of specific power production compared to inlet fogging alone, since a larger water injection rate is possible. Transient analysis of after fogging process is carried out by using a heat and mass transfer modeling on water droplet evaporation. Transient variables such as droplet diameter and air temperature are evaluated as the droplet evaporation proceeds for different values of initial droplet diameter, pressure ratio of compressor, and water injection ratio. The evaporation time for injected droplets are also estimated. Present results show that the evaporation time decreases sensitively with increasing pressure ratio or initial droplet diameter. However, the effect of water injection ratio on evaporation time is relatively insignificant unless water injection ratio is near the critical ratio.  相似文献   

8.
An analytical and experimental study of frost growth on a cooled plate being exposed to forced convective humid air stream was carried out. Attention is mainly focused on the incipient phenomena of the frost formation including the growth of supercooled water droplets which are based on condensation of water vapor leaving the air. Two kinds of the plates having different contact angles to water droplet (110 deg and 43 deg) are used as the testing ones. The effects of the velocity, humidity, and temperature of the air stream, the contact angle to water droplet, and the temperature of the cooled plate on the frost formation are extensively determined. An analytical model which is based on the experimental observations is found to closely predict the general trends in the growths of the supercooled water droplets and the porous frost layer.  相似文献   

9.
In order to obtain the knowledge necessary for developing new effective fire extinguishing technologies, we determined experimentally the gas temperature in the trace of water droplets streamlined by hot air flow. It was important to establish how much the temperature in the droplet trace decreases and how fast it recovery to the initial temperature field after the droplet evaporation. The following parameters were varied: droplet size from 1.3 mm to 1.7 mm, velocity from 1 m/s to 5 m/s, initial airflow temperature from 473 K to 773 K, number of droplets (one or two), and the arrangement of droplets relative to the hot inflow (serial or parallel). The study proves the theoretical hypothesis about a significant influence of evaporation on the temperature in the water droplet trace. When a temperature trace of water droplets is formed, irrespective of their arrangement, the role of the evaporation process strengthens with the gas flow temperature rising. Furthermore, the study specifies typical longitudinal dimensions of the aerodynamic and temperature traces of water droplets. It has been established that when droplets are located in series and in parallel, their combined impact on the temperature and velocity of the gas flow in the medium differs rather considerably.  相似文献   

10.
This paper presents the results of an experimental investigation, into the effect of water in diesel and kerosene emulsions, on the evaporation time of a single droplet, on hot surfaces (stainless-steel and aluminum). Experiments are performed at atmospheric pressure, and initial water volume concentrations of 10, 20, 30, and 40%. The wall temperatures ranging from 100–460 °C, to cover the entire spectrum of heat transfer characteristics from evaporation to film boiling. Results show that, qualitatively, the shapes of emulsion evaporation curves are very similar to that of pure liquids. Quantitavely, there are significant differences. The total evaporation time, for the emulsion droplets is lower than that for diesel and kerosene fuels, and decreased as water initial concentration increases, up to surface temperatures less than the critical temperature. The value of the critical surface temperature (maximum heat transfer rate), decreases as initial concentration of water increases. In the film-boiling region, the evaporation time for the emulsion droplets is higher than for diesel and kerosene droplets, at identical conditions.List of Symbols hfg latent heat of vaporization, KJ/kg - m mass of the droplet, gm - Tb boiling temperature, °C - Tc critical temperature, °C - TL Leidenfrost temperature, °C - Ts initial surface temperature of the hot surface, °C  相似文献   

11.
The present paper reports an experimental study aimed at characterizing the effects of heat transfer on the secondary atomization, which occurs during droplet impact on hot surfaces at conditions reproducing those occurring at fuel injection in internal combustion engines. The experiments consider single isooctane and water droplets impacting at different angles on a stainless steel surface with known roughness and encompass a range of Weber numbers from 240 to 600 and heat transfer regimes from the film-vaporization up to the Leidenfrost regime. The mechanisms of secondary breakup are inferred from the temporal evolution of the morphology of the impact imaged with a CCD camera, together with instantaneous measurements of droplet size and velocity. The combination of a technique for image processing with a phase Doppler instrument allows evaluating extended size distributions from 5.5 μm up to a few millimetres and to cover the full range of secondary droplet sizes observed at all heat transfer regimes and impaction angles. Temporal evolution of the size and velocity distributions are then determined. The experiments are reported at impact conditions at which disintegration does not occur at ambient temperature. So, any alteration observed in droplet impact behavior is thermally induced. The analysis is relevant for port fuel injection systems, where droplets injected to impact on the back surface of the valves, behave differently depending on fuel properties, particularly when the use of alcohols is considered, even as an additive to gasoline.  相似文献   

12.
Heat transfer towards a water droplet from hydrophobic micro-post array surface is considered while mimicking the environmental temperatures. Micro-post arrays are created on a silicon wafer surface via lithography technique. The textured surfaces are replicated by polydimethylsiloxane (PDMS) to achieve an optical transmittance. The droplet adhesion on micro-post array surface is presented and the influence of droplet size on the heat transfer and droplet internal flow characteristics is examined. The flow predictions are validated via the particle image velocimetry data. It is found that adhesion force between the water droplet and the micro-post arrays surface depends on the geometric size and the orientation of the micro-post arrays on the surface. Temperature and flow fields are influenced by the droplet size. The Nusselt and the Bond numbers increase with the droplet volume; however, the Bond number remains less than unity indicating that the Marangoni current dominates over the buoyancy current in the droplet. The Nusselt number attains larger values for micro-post array surface than that of the plain surface. This is because of temperature and velocity oscillations along the contact lines at the droplet bottom due to the pitches of the micro-post arrays.  相似文献   

13.
 This paper has dealt with direct contact heat and mass transfer characteristics of air bubbles in a hot water layer. The experiments were carried out by bubbling air in the hot water layer under some experimental conditions of air flow rate, inlet air temperature and humidity as a dispersion fluid, and hot water temperature and hot water layer depth as a continuous fluid. Heat transfer and evaporation of water vapor from hot water to air bubbles occurred during air bubbles ascending into the hot water. Air bubble flow patterns were classified into three regions of independent air bubble flow, transition and air bubble combination growth. Non-dimensional correlation equations of direct contact heat and mass transfer between air bubbles and hot water were derived by some non- dimensional parameters for three regions of bubble flow pattern. Received on 14 July 2000 / Published online: 29 November 2001  相似文献   

14.
In consideration of droplet–film impaction, film formation, film motion, bubble boiling (both wall nucleation bubbles and secondary nucleation bubbles), droplet–bubble interaction, bulk air convection and radiation, a model to predict the heat and mass transfer in spray cooling was presented in this paper. The droplet–film impaction was modeled based on an empirical correlation related with droplet Weber number. The film formation, film motion, bubble growth, and bubble motion were modeled based on dynamics fundamentals. The model was validated by the experimental results provided in this paper, and a favorable comparison was demonstrated with a deviation below 10%. The film thickness, film velocity, and non-uniform surface temperature distribution were obtained numerically, and then analyzed. A parameters sensitivity analysis was made to obtain the influence of spray angle, surface heat flux density, and spray flow rate on the surface temperature distribution, respectively. It can be concluded that the heat transfer induced by droplet–film impaction and film-surface convection is dominant in spray cooling under conditions that the heated surface is not superheated. However, the effect of boiling bubbles increases rapidly while the heated surface becomes superheated.  相似文献   

15.
The flow structure and heat transfer of a mist jet with a low mass concentration of droplets (within 1%) impinging onto a flat surface aligned normal to the jet are studied numerically. The mathematical model is based on solving a system of Reynolds-averaged Navier-Stokes equations for a two-phase flow with the kinetic equation of the probability density function for coordinates, velocity, and temperature of particles. Addition of droplets is demonstrated to enhance heat transfer substantially, as compared with an impinging single-phase air jet in the region directly adjacent to the stagnation point of the jet.  相似文献   

16.
尚超  阳倦成  张杰  倪明玖 《力学学报》2019,51(2):380-391
常温下为液态的镓铟锡合金以其优异的导热性能在具有特殊要求的传热领域有着重要的应用价值,与传统流动介质相比较大的表面张力使得其产生的流动现象必有所区别.本文研究镓铟锡所形成的液滴撞击泡沫金属表面后所产生的铺展、回缩及回弹现象.采用高速相机拍摄液滴投影轮廓随液滴运动的变化过程,并通过图像处理获得不同撞击速度、底板表面孔径下的液滴铺展系数、中心位置轮廓高度以及液滴回弹后在空中的振动特性.研究结果表明:具有较高表面张力的镓铟锡液滴的铺展系数随无量纲时间的变化在铺展初始阶段仍满足常规流体的1/2次幂关系,只在铺展后期与底板的无量纲孔径有关系;液滴的最大铺展系数在较小无量纲孔径底板大于在光滑镍板,且随底板无量纲孔径增大而逐渐减小;在回弹过程,由于底板孔隙结构的存在使得液滴回弹后在空中的振动呈现3种形态:规则的横向和纵向振动、带旋转的横向和纵向振动以及旋转振动;最后,通过对振动频率的拟合和分析,进一步拓展了传统振动频率理论公式在非规则振动过程预测中的应用.   相似文献   

17.
Evaporation rates of water droplets in high-temperature gases were experimentally determined using high-speed video recording cameras and low-inertia thermocouples (for heated air flow as an example). The experiments were carried out for droplets of initial size (radius) 1–3 mm at an air temperature of 500–1000 K. Dependences of the evaporation rate of water droplets on time and gas temperature were obtained for various initial droplet sizes.  相似文献   

18.
The effect of swirling intensity on the structure and heat transfer of a turbulent gas–droplet flow after a sudden pipe expansion has been numerically simulated. Air is used as the carrier phase, and water, ethanol, and acetone are used as the dispersed phase. The Eulerian approach is applied to simulate the dynamics and heat transfer in the dispersed phase. The gas phase is described by a system of Reynolds-averaged Navier-Stokes (RANS) equations, taking into account the effect of droplets on mean transport and turbulent characteristics in the carrier phase. Gas phase turbulence is predicted using the second-moment closure. A swirling droplet-laden flow is characterized by an increase in the number of small particles on the pipe axis due to their accumulation in the zone of flow recirculation and the action of the turbulent migration (turbophoresis) force. A rapid dispersion of fine droplets over the pipe cross-section is observed without swirling. With an increase in swirling intensity, a significant reduction in the length of the separation region occurs. The swirling of a two-phase flow with liquid droplets leads to an increase in the level of turbulence for all three types of liquid droplets investigated in this work due to their intensive evaporation. It is shown that the addition of droplets leads to a significant increase in heat transfer in comparison with a single-phase swirling flow. The greatest effect of flow swirling on heat transfer intensification in a two-phase gas-droplet flow is obtained for the droplets of ethanol and water and smallest effect is for the acetone droplets.  相似文献   

19.
 The convective heat transfer from a cylinder to a humid air stream flowing normal to the cylinder was investigated experimentally at atmospheric pressure over a range of variables which is relevant to the use of hot‐wire anemometry: air temperatures between 30 °C and 70 °C and velocities between 12 and 37 m/s. For molar fractions of water vapour up to 0.27, the heat transfer increased with increasing humidity. The ratio of heat transfer rates in humid air and dry air is a unique function of the molar fraction of water vapour, independent of the air temperature and flow velocity. Received: 28 November 1996/Accepted: 5 July 1997  相似文献   

20.
Heat and mass transfer in fuel droplet evaporation are investigated through numerical simulation and experimental study. The effect of liquid-phase heat transfer is studied using the temperature difference between the gas- and liquid-phase droplets, different turbulent intensity and oscillatory flow frequency. For the two-droplet array, some differences in heat and mass transfer mechanisms are found. For different spacing of the two-droplet array, the downstream droplet evaporation is affected by the lead droplet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号