首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Open celled metal foams fabricated through metal sintering are a new class of material that offers novel mechanical and acoustic properties. Previously, polymer foams have been widely used as a means of absorbing acoustic energy. However, the structural applications of these foams are limited. The metal sintering approach offers a cost- effective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys. In this first part of two-paper series, the mechanical properties of open-celled steel alloy (FeCrAlY) foams were characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throughout the microstructure that result from the unique fabrication process. Further in situ tests were carried out in a SEM (scanning electronic microscope) in order to investigate the effects of defects on the properties of the foams. Typically, the onset of plastic yielding was observed to occur at defect locations within the microstructure. At lower relative densities, ligament bending dominates, with the deformation initializing at defects. At higher relative densities, an additional deformation mechanism associated with membrane elements was observed. In the follow-up of this paper, a finite element model will be constructed to quantify the effects of defects on the mechanical performance of the open-cell foam. The project supported by the US Office of Naval Research (N000140210117), the National Basic Research Program of China (2006CB601202), the National Natural Science Foundation of China (10328203, 10572111, 10632060), and the National 111 Project of China (B06024).  相似文献   

2.
Structural modeling of sandwich structures with lightweight cellular cores   总被引:2,自引:0,他引:2  
An effective single layered finite element (FE) computational model is proposed to predict the structural behavior of lightweight sandwich panels having two dimensional (2D) prismatic or three dimensional (3D) truss cores. Three different types of cellular core topology are considered: pyramidal truss core (3D), Kagome truss core (3D) and corrugated core (2D), representing three kinds of material anisotropy: orthotropic, monoclinic and general anisotropic. A homogenization technique is developed to obtain the homogenized macroscopic stiffness properties of the cellular core. In comparison with the results obtained by using detailed FE model, the single layered computational model can give acceptable predictions for both the static and dynamic behaviors of orthotropic truss core sandwich panels. However, for non-orthotropic 3D truss cores, the predictions are not so well. For both static and dynamic behaviors of a 2D corrugated core sandwich panel, the predictions derived by the single layered computational model is generally acceptable when the size of the unit cell varies within a certain range, with the predictions for moderately strong or strong corrugated cores more accurate than those for weak cores. The project supported by the National Basic Research Program of China (2006CB601202), the National Natural Science Foundation of China (10328203, 10572111, 10572119, 10632060), the National 111 Project of China (B06024), the Program for New Century Excellent Talents in University (NCET-04-0958), the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment, and the Doctorate Foundation of Northwestern Polytechnical University.  相似文献   

3.
This study is concerned with the understanding and modeling of the compressive response of open cell foams. The response starts with a nearly linear elastic regime which terminates into a limit load followed by an extensive load plateau. The plateau, which is responsible for the excellent energy absorption capacity of foams, is followed by a second stiff branch. Results from polyester urethane open cell foams with relative densities of about 0.025 are used to illustrate this behavior using experiments coupled with several levels of modeling. The experiments include characterization of the microstructure and the properties of the base material and measurement of the compressive response of the foams of various cell sizes.A sequence of models for predicting the complete response of such foam is developed. The foam is idealized to be periodic using the space-filling Kelvin cell assigned the major geometric characteristics found in the foams tested. The cells are elongated in the rise direction, the ligaments are assumed to be straight, to have Plateau border cross-sections and nonuniform cross-sectional area distribution. The ligaments are modeled as shear-deformable extensional beams and the base material is assumed to be linearly elastic. Prediction of the initial elastic moduli are addressed in Part I. Closed form expressions for the material constants are presented as well as results using a FE model of the characteristic cell. Comparison between measurements and predictions is very favorable. The paper finishes with results from a limited parametric study of the elastic moduli. The results demonstrate that inclusion of the geometric complexities mentioned above is essential for successful prediction of the moduli of such foams. The nonlinear parts of the response including the foam crushing behavior are addressed in Part II.  相似文献   

4.
This work is devoted to the numerical and experimental study of annealing effects on microstructure and mechanical properties of the high-density polyethylene (HDPE). Uniaxiale tension tests are conducted at 25 °C in order to characterize the mechanical behavior of HDPE. The influence of the annealing treatment on the material microstructure is examined by the Fourier transform infrared spectroscopy, and microstructures are characterized using differential scanning calorimetry. The distribution of nonlinear relaxation approach is adopted to describe the mechanical response of virgin and annealed HDPE. Annealing effects are incorporated into the constitutive model by introducing the microstructure (crystallinity degree) evolution on the macroscopic response of the material. The numerical predictions of the model are in good agreement with experimental results for the different states of the material.  相似文献   

5.
In the analysis of materials with random heterogeneous microstructure the assumption is often made that material behavior can be represented by homogenized or effective properties. While this assumption yields accurate results for the bulk behavior of composite materials, it ignores the effects of the random microstructure. The spatial variations in these microstructures can focus, initiate and propagate localized non-linear behavior, subsequent damage and failure. In previous work a computational method, moving window micromechanics (MW), was used to capture microstructural detail and characterize the variability of the local and global elastic response. Digital images of material microstructure described the microstructure and a local micromechanical analysis was used to generate spatially varying material property fields. The strengths of this approach are that the material property fields can be consistently developed from digital images of real microstructures, they are easy to import into finite element models (FE) using regular grids, and their statistical characterizations can provide the basis for simulations further characterizing stochastic response. In this work, the moving window micromechanics technique was used to generate material property fields characterizing the non-linear behavior of random materials under plastic yielding; specifically yield stress and hardening slope, post yield. The complete set of material property fields were input into FE models of uniaxial loading. Global stress strain curves from the FE–MW model were compared to a more traditional micromechanics model, the generalized method of cells. Local plastic strain and local stress fields were produced which correlate well to the microstructure. The FE–MW method qualitatively captures the inelastic behavior, based on a non-linear flow rule, of the sample continuous fiber composites in transverse uniaxial loading.  相似文献   

6.
A mean field mechanical model describing the inelastic behavior and strong anisotropy of Directionally Solidified (DS) materials is developed. Its material parameters are calibrated by comparison with the Finite Element (FE) computation of a Representative Volume Element (RVE). In the case of a large grain alloy where microstructure size cannot be neglected with respect to geometrical variations, this approach is a good candidate to evaluate the local scatter coming from the material heterogeneity.  相似文献   

7.
Using elastic crystalline viscoplastic finite element (FE) annlysis, the formability of BCC steel sheets was assessed. An orientation probability assignment method in the FE modeling procedure, which can be categorized as an inhomogenized material modeling, was newly proposed. In the study, the crystal orientations of three materials, mild steel, dual phase steel and the high strength steel, were obtained by X-ray diffraction and orientation distribution function (ODF) analyses. The measured ODF results have revealed clearly different textures in the sheets, featured by orientation fibers, skeleton lines and selected orientations in Euler angle space, which are closely related to the plastic anisotropy. Then, the crystal orientations were assigned to FE integration points by using this ODF data, individually. The FE analyses of the standard limiting dome height(LDH) test show how the fiber textures affect the extent of strain localization in the forming processes. It was confirmed by comparison with experimental results that this FE code could predict the extreme strain localization and assess the sheet formability. The third author is indebted to the National Natural Science Foundation of China for financial support (Grant No. 59875025) to the research cooperation with OIT, Japan.  相似文献   

8.
泡沫材料的宏观力学性能主要取决于基体材料的力学特性及其微细观结构特征,基于细观力学模型的分析方法是泡沫材料力学性能研究的重要途径。文中基于Matlab语言和Abaqus软件构建了描述中等孔隙率开孔弹性泡沫材料微结构特征的三维随机分布球形泡孔模型,并采用有限元方法对弹性泡沫压缩变形进行了模拟,并计算给出了不同孔隙率弹性泡沫材料弹性模量、剪切模量、体积模量以及泊松比的分布,建立了相应的唯象表达式。与理论模型及测试结果的比较表明,本文基于三维随机泡孔模型模拟结果构建的唯象表达式能够对弹性泡沫材料的弹性力学性能给出很好的预测。  相似文献   

9.
程锦泉  王彪  杜善义 《力学学报》2001,33(3):407-414
针对铁电材料含有随机分布缺陷以及微结构在外场作用下发生变化的特点,建立起一个细观统计力学模型,考虑到缺陷和酶极化转动之间的相互影响,利用细观力学方法-Eshelby等效夹杂法和Mori-Tanaka的平均理论,具体分析了所含缺陷以及外场对铁电材料有效电弹性能和模量的影响。针对BaTiO3铁电陶瓷的有效电弹性能与常数的预报结果表明了缺陷的存在将增强材料的压电性能。  相似文献   

10.
Synthetic open-cell foams have a complex microstructure consisting of an interconnected network of cells resulting from the foaming process. The cells are irregular polyhedra with anywhere from 9 to 17 faces in nearly monodisperse foams. The material is concentrated in the nearly straight ligaments and in the nodes where they intersect. The mechanical properties of such foams are governed by their microstructure and by the properties of the base material. In this study micro-computed X-ray tomography is used to develop 3D images of the morphology of polyester urethane and Duocel aluminum foams with different average cell sizes. The images are used to establish statistically the cell size and ligament length distributions, material distributions along the ligaments, the geometry of the nodes and cell anisotropy. The measurements are then used to build finite element foam models of increasing complexity that are used to estimate the elastic moduli. In the most idealized model the microstructure is represented as a regular Kelvin cell. The most realistic models are based on Surface Evolver simulations of random soap froth with N3 cells in spatially periodic domains. In all models the cells are elongated in one direction, the ligaments are straight but have a nonuniform cross sectional area distribution and are modeled as shear deformable beams. With this input both the Kelvin cell models and the larger random foam models are shown to predict the elastic moduli with good accuracy but the random foams are 5–10% stiffer.  相似文献   

11.
高速列车铁基烧结闸片材料的摩擦磨损性能研究   总被引:13,自引:3,他引:10  
采用粉末冶金工艺,通过对材料组成和工艺等的实验研究,获得了一种铁基烧结闸片材料,对材料的物理机械性能、摩擦磨损性能和微观组织结构等进行了分析测试,探讨了烧结摩擦材料的摩擦磨损机理以及材料微观组织结构与摩擦磨损性能之间的关系。结果表明:该材料摩擦系数较高(0.31),磨损率低(0.022mm/次),摩擦稳定性优良;同时具有良好的物理机械性能,是一种潜在的高速列车制动闸片材料。烧结摩擦材料的摩擦机理归于啮合和粘着,而磨损机理归于磨粒磨损和疲劳裂纹萌生及扩展。  相似文献   

12.
In this study, the deformation behaviour of polycrystalline austenitic 316H stainless steel under uniaxial loading is investigated by means of in-situ neutron diffraction (ND) measurement and crystal plasticity-based finite element (FE) modelling. Data have been obtained for the macroscopic stress–strain response and the lattice strain evolution in the longitudinal and transverse direction relative to the uniaxial loading axis. Comparison between the model predictions and the ND measurements suggests that in most cases the FE model can predict the lattice strain evolution at the microscale and capture the general trends observed in the experiments. Both ND measurements and FE modelling simulations identify little effect of micromorphology effect on the longitudinal lattice strain evolution, while the transverse lattice strain response appears to be sensitive to the microstructure, in particular the initial crystallographic orientation of the material.  相似文献   

13.
Ubiquitous in nature and finding applications in engineering systems, cellular solids are an increasingly important class of materials. Foams are an important subclass of cellular solids with applications as packing materials and energy absorbers due to their unique properties. A better understanding of foam mechanical properties and their dependence on microstructural details would facilitate manufacture of tailored materials and development of constitutive models for their bulk response. Numerical simulation of these materials, while offering great promise toward furthering understanding, has also served to convincingly demonstrate the inherent complexity and associated modeling challenges.The large range of deformations which foams are subjected to in routine engineering applications is a fundamental source of complication in modeling the details of foam deformation on the scale of foam struts. It requires accurate handling of large material deformations and complex contact mechanics, both well established numerical challenges. A further complication is the replication of complex foam microstructure geometry in numerical simulations. Here various advantages of certain particle methods, in particular their compatibility with the determination of three-dimensional geometry via X-ray microtomography, are exploited to simulate the compression of “real” foam microstructures into densification. With attention paid to representative volume element size, predictions are made regarding bulk response, dynamic effects, and deformed microstructural character, for real polymeric, open-cell foams. These predictions include a negative Poisson's ratio in the stress plateau, and increased difficulty in removing residual porosity during densification.  相似文献   

14.
The coupled effect of moisture diffusion and mechanical loading on the microstructure of asphalt concrete is studied. The traditional Continuum Damage Mechanics (CDM) framework is modified to model detrimental effects of moisture and mechanical loading. Adhesive/cohesive moisture-induced damage constitutive relationships are proposed to describe the time-dependent degradation of material properties due to moisture. X-ray two-dimensional (2D) computed tomography-imaging technique is used to construct finite element (FE) microstructural representation of a typical dense-graded asphalt concrete. After being calibrated against pull-off experiments, the proposed moisture-induced damage constitutive relationship, which is coupled to thermo-viscoelastic–viscoplastic–viscodamage mechanisms, is used to simulate the microstructure of asphalt concrete. Simulation results demonstrate that the generated 2D FE microstructural representation along with the coupled moisture–mechanical constitutive relationship can be effectively used to model the overall thermo-hygro-mechanical response of asphalt concrete.  相似文献   

15.
泡沫材料对冲击波的衰减特性   总被引:1,自引:0,他引:1  
周佩杰  王坚  陶钢  周杰 《爆炸与冲击》2015,35(5):675-681
对冲击波与开式、闭式泡沫作用及其在空气中的传播特性开展实验研究,探讨不同结构的泡沫材料对冲击波衰减的力学特征。通过定量分析泡沫材料对冲击波的超压峰值、正冲量的损失,分析冲击波入射、反射、透射的正冲量。实验结果表明, 泡沫材料对冲击波的衰减体现在对冲击波的反射衰减等方面,其中开式泡沫对冲击波的衰减效果比闭式泡沫稍好,且它们衰减冲击波的具体力学过程也不尽相同。  相似文献   

16.
Biological tissues have unique mechanical properties due to the wavy fibrous collagen and elastin microstructure. In inflation, a vessel easily distends under low pressure but becomes stiffer when the fibers are straightened to take up the load. The current microstructural models of blood vessels assume affine deformation, i.e., the deformation of each fiber is assumed to be identical to the macroscopic deformation of the tissue. This uniform-field (UF) assumption leads to the macroscopic (or effective) strain energy of the tissue that is the volumetric sum of the contributions of the tissue components. Here, a micromechanics-based constitutive model of fibrous tissue is developed to remove the affine assumption and to take into consideration the heterogeneous interactions between the fibers and the ground substance. The development is based on the framework of a recently developed second-order homogenization theory, and takes into account the waviness, orientations and spatial distribution of the fibers, as well as the material nonlinearity at finite-strain deformation. In an illustrative simulation, the predictions of the macroscopic stress-strain relation and the statistical deformation of the fibers are compared to the UF model, as well as finite-element (FE) simulation. Our predictions agree well with the FE results, while the UF predictions significantly overestimate. The effects of fiber distribution and waviness on the macroscopic stress-strain relation are also investigated. The present mathematical model may serves as a foundation for native as well as for engineered tissues and biomaterials.  相似文献   

17.
Hollow-sphere structures could represent an alternative to classical cellular materials, such as metal foams or honeycombs, for various structural applications; such stainless steel random structures are already on the market. One advantage of hollow-sphere structures unlike metal foams ensues from the possibility to stack the spheres regularly, even if in the literature there are only examples of limited size regular stackings for the moment. Higher mechanical properties than those of random cellular structures are expected for such regular structures according to modelling studies. Nevertheless, because of the difficulty in processing perfect regular stackings, it seems to be critical to study the influence of architectural defects on the overall mechanical behaviour of these cellular structures. Emphasis is on geometrical defects by introducing some dispersions on the sphere thickness and the meniscus size. Influences of both the magnitude of dispersion and the distribution of the defects on the mechanical behaviour of hollow-sphere structure are investigated. Especially, collapse mechanisms resulting from plasticity and their inhomogeneous localisation in the structure are studied in details. The case of periodic defects is addressed too in order to compare the mechanical response of infinite stackings to that of finite ones. This work highlights the significant influence of the defects on the effective mechanical behaviour of hollow-sphere structures. Most of the time, geometrical dispersion and defects are detrimental for the stacking behaviour, especially when understructures made of the defective hollow spheres or menisci are observed.  相似文献   

18.
The flame straightening of steel components is based on heating a local region of the part by means of a torch in order to induce a permanent deformation through a field of residual stresses. Although this is a very common practice, it is not devoid of serious drawbacks. In this paper, the influence of the flame bending procedure on the microstructure of three very different structural steels (S235 JR, S460 ML and S690 QL, respectively), widely used for the construction of metallic structures, is analysed. The consequences of the heat treatment on the mechanical and fracture properties were characterised through micro-hardness Vickers and Charpy impact tests; in addition, some elastic-plastic fracture tests were performed on precracked Charpy specimens manufactured with the S235 JR steel. The relationship between the microstructural features and the material mechanical and fracture behaviour was studied in depth in all cases, correlating the changes induced by the flame heat treatment on the microstructure with the macroscopic mechanical and fracture response. For a proper understanding of the microstructural consequences of this straightening heat treatment, it was necessary to develop a Finite Element numerical model. Based on the experimental results, this study has revealed that the consequences of the flame straightening on the microstructure, mechanical or fracture behaviour strongly depend on the nature of the material; for this reason, it is not possible to establish general recommendations. Nevertheless, the paper proposes a series of guidelines for good practice for steels similar to those characterised here.  相似文献   

19.
We present an implementation of the viscoplastic self-consistent (VPSC) polycrystalline model in an implicit finite element (FE) framework, which accounts for a dislocation-based hardening law for multiple slip and twinning modes at the micro-scale grain level. The model is applied to simulate the macro-scale mechanical response of a highly anisotropic low-symmetry (orthorhombic) crystal structure. In this approach, a finite element integration point represents a polycrystalline material point and the meso-scale mechanical response is obtained by the mean-field VPSC homogenization scheme. We demonstrate the accuracy of the FE-VPSC model by analyzing the mechanical response and microstructure evolution of α-uranium samples under simple compression/tension and four-point bending tests. Predictions of the FE-VPSC simulations compare favorably with experimental measurements of geometrical changes and microstructure evolution. Specifically, the model captures accurately the tension–compression asymmetry of the material associated with twinning, as well as the rigidity of the material response along the hard-to-deform crystallographic orientations.  相似文献   

20.
李志斌 《爆炸与冲击》2016,36(5):734-738
通过不同形状(平头和半球头)的压头在不同温度下对闭孔泡沫铝材料进行塑性压入实验,研究不同温度下闭孔泡沫铝的压入变形模式及载荷响应特性。并基于闭孔泡沫铝在高温下的准静态塑性压入载荷响应的实验结果,结合多种分析方法,(如量纲分析和有限元计算等),探索既考虑温度影响也包含压入深度影响的预测闭孔泡沫铝平头和半球头压入力学响应的经验公式。结果表明,本文得到的两种压头情况下的经验公式都能够较好地预测闭孔泡沫铝在不同温度下的压入力学响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号