首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Metals and alloys with hexagonal close packed (HCP) crystal structures can undergo twinning in addition to dislocation slip when loaded mechanically. The complexity of the plastic response and the limited extent of twinning are impediments to their room-temperature formability and thus their widespread adoption. In order to exploit the unusual deformation characteristics of twinning sheet materials in designing novel forming operations, a practical plane stress material model for finite element implementation was sought. Such a model, TWINLAW, has been constructed based on three phenomenological deformation modes for Mg AZ31B: S (slip), T (twinning), and U (untwinning). The modes correspond to three testing regimes: initial in-plane tension (from the annealed state), initial in-plane compression, and in-plane tension following compression, respectively. A von Mises yield surface with initial non-zero back stress was employed to account for plastic yielding asymmetry, with evolution according to a novel isotropic and nonlinear kinematic hardening model. Texture and its evolution were represented throughout deformation using a weighted discrete probability density function of c-axis orientations. The orientation of c-axes evolves with twinning or untwinning using explicit rules incorporated in the model.  相似文献   

2.
A crystal-inelasticity-based constitutive model for martensitic reorientation and detwinning in shape-memory alloys (SMAs) has been developed from basic thermodynamics principles. The model has been implemented in a finite-element program by writing a user-material subroutine. We perform two sets of finite-element simulations to model the behavior of polycrystalline SMAs: (1) The full finite-element model where each finite element represents a collection of martensitic microstructures which originated from within an austenite single crystal, chosen from a set of crystal orientations that approximates the initial austentic crystallographic texture. The macroscopic stress-strain responses are calculated as volume averages over the entire aggregate: (2) The Taylor model (J. Inst. Metals 62 (1938) 32) where an integration point in a finite element represents a material point which consist of sets of martensitic microstructures which originated from within respective austenite single-crystals. Here the macroscopic stress-strain responses are calculated through a homogenization scheme.Experiments in tension and compression were conducted on textured polycrystalline Ti-Ni rod initially in the martensitic phase by Xie et al (Acta Mater. 46 (1998) 1989). The material parameters for the constitutive model were calibrated by fitting the tensile stress-strain response from a full finite-element calculation of a polycrystalline aggregate to the simple tension experiment. With the material parameters calibrated the predicted stress-strain curve for simple compression is in very good accord with the corresponding experiment. By comparing the simulated stress-strain response in simple tension and simple compression it is shown that the constitutive model is able to predict the observed tension-compression asymmetry exhibited by polycrystalline Ti-Ni to good accuracy. Furthermore, our calculations also show that the macroscopic stress-strain response depends strongly on the initial martensitic microstructure and crystallographic texture of the material.We also show that the Taylor model predicts the macroscopic stress-strain curves in simple tension and simple compression reasonably well. Therefore, it may be used as a relatively inexpensive computational tool for the design of components made from shape-memory materials.  相似文献   

3.
微结构演化对镁合金材料力学性能有着显著的影响,为了揭示镁合金宏观塑性各向异性特性与非均匀孪生变形的关系,开展了不同路径下的单轴加载试验以及采用含滑移、孪生机制的晶体塑性本构模型对试验条件下的镁合金变形行为进行数值模拟研究。文中本构模型描述了滑移与孪生变形机制以及晶格转动的机制,同时研究采用三维微结构代表性有限元模型,其包含晶粒尺寸、晶向和晶界倾角等微结构参数。研究结果表明,轧制镁合金具有强烈的宏观塑性各向异性行为,并对这种镁合金塑性各向异性行为的模拟结果以及多晶织构的模拟演化结果与试验测量进行对比,结果都基本吻合。对孪生非均匀变形模拟分析表明,镁合金宏观塑性各向异性行为与滑移、孪生变形机制的不同启动组合紧密相关,同时多晶体内应力的非均匀分布受到孪生变形的严重影响。而不同晶粒尺寸的晶粒所发生的孪生变形有比较大的差异,造成孪晶变体在晶粒内的分布极不均匀。本研究可为通过微结构的合理配置来设计和控制材料的力学性能提供理论依据.  相似文献   

4.
5.
A large strain elastic-viscoplastic self-consistent (EVPSC) model for polycrystalline materials is developed. At single crystal level, both the rate sensitive slip and twinning are included as the plastic deformation mechanisms, while elastic anisotropy is accounted for in the elastic moduli. The transition from single crystal plasticity to polycrystal plasticity is based on a completely self-consistent approach. It is shown that the differences in the predicted stress-strain curves and texture evolutions based on the EVPSC and the viscoplastic self-consistent (VPSC) model proposed by Lebensohn and Tomé (1993) are negligible at large strains for monotonic loadings. For the deformations involving unloading and strain path changes, the EVPSC predicts a smooth elasto-plastic transition, while the VPSC model gives a discontinuous response due to lack of elastic deformation. It is also demonstrated that the EVPSC model can capture some important experimental features which cannot be simulated by using the VPSC model.  相似文献   

6.
In this study, the deformation behaviour of polycrystalline austenitic 316H stainless steel under uniaxial loading is investigated by means of in-situ neutron diffraction (ND) measurement and crystal plasticity-based finite element (FE) modelling. Data have been obtained for the macroscopic stress–strain response and the lattice strain evolution in the longitudinal and transverse direction relative to the uniaxial loading axis. Comparison between the model predictions and the ND measurements suggests that in most cases the FE model can predict the lattice strain evolution at the microscale and capture the general trends observed in the experiments. Both ND measurements and FE modelling simulations identify little effect of micromorphology effect on the longitudinal lattice strain evolution, while the transverse lattice strain response appears to be sensitive to the microstructure, in particular the initial crystallographic orientation of the material.  相似文献   

7.
This paper is concerned with the multiscale simulation of plastic deformation of metallic specimens using physically-based models that take into account their polycrystalline microstructure and the directionality of deformation mechanisms acting at single-crystal level. A polycrystal model based on self-consistent homogenization of single-crystal viscoplastic behavior is used to provide a texture-sensitive constitutive response of each material point, within a boundary problem solved with finite elements (FE) at the macroscale. The resulting constitutive behavior is that of an elasto-viscoplastic material, implemented in the implicit FE code ABAQUS. The widely-used viscoplastic selfconsistent (VPSC) formulation for polycrystal deformation has been implemented inside a user-defined material (UMAT) subroutine, providing the relationship between stress and plastic strain-rate response. Each integration point of the FE model is considered as a polycrystal with a given initial texture that evolves with deformation. The viscoplastic compliance tensor computed internally in the polycrystal model is in turn used for the minimization of a suitable-designed residual, as well as in the construction of the elasto-viscoplastic tangent stiffness matrix required by the implicit FE scheme.Uniaxial tension and simple shear of an FCC polycrystal have been used to benchmark the accuracy of the proposed implicit scheme and the correct treatment of rotations for prediction of texture evolution. In addition, two applications are presented to illustrate the potential of the multiscale strategy: a simulation of rolling of an FCC plate, in which the model predicts the development of different textures through the thickness of the plate; and the deformation under 4-point bending of textured HCP bars, in which the model captures the dimensional changes associated with different orientations of the dominant texture component with respect to the bending plane.  相似文献   

8.
A complete 3-D crystal plasticity finite element method (CPFEM) that considered both crystallographic slip and deformation twinning was applied to simulate the spatial distribution of the relative amount of slip and twin activities in a polycrystalline AZ31 Mg alloy during in-plane compression. A microstructure mapping technique that considered the grain size distribution and microtexture measured by electron backscatter diffraction (EBSD) technique was used to create a statistically representative 3-D microstructure for the initial configuration. Using a 3-D Monte Carlo method, a 3-D digital microstructure that matched the experimentally measured grain size distribution was constructed. Crystallographic orientations obtained from the EBSD data were assigned on the 3-D digital microstructure to match the experimentally measured misorientation distribution. CPFEM captured the heterogeneity of the stress concentration as well as the slip and twin activities of a polycrystalline AZ31 Mg alloy during in-plane compression.  相似文献   

9.
We present a multiscale model for anisotropic, elasto-plastic, rate- and temperature-sensitive deformation of polycrystalline aggregates to large plastic strains. The model accounts for a dislocation-based hardening law for multiple slip modes and links a single-crystal to a polycrystalline response using a crystal plasticity finite element based homogenization. It is capable of predicting local stress and strain fields based on evolving microstructure including the explicit evolution of dislocation density and crystallographic grain reorientation. We apply the model to simulate monotonic mechanical response of a hexagonal close-packed metal, zirconium (Zr), and a body-centered cubic metal, niobium (Nb), and study the texture evolution and deformation mechanisms in a two-phase Zr/Nb layered composite under severe plastic deformation. The model predicts well the texture in both co-deforming phases to very large plastic strains. In addition, it offers insights into the active slip systems underlying texture evolution, indicating that the observed textures develop by a combination of prismatic, pyramidal, and anomalous basal slip in Zr and primarily {110}〈111〉 slip and secondly {112}〈111〉 slip in Nb.  相似文献   

10.
A crystal plasticity finite element code is developed to model lattice strains and texture evolution of HCP crystals. The code is implemented to model elastic and plastic deformation considering slip and twinning based plastic deformation. The model accounts for twinning reorientation and growth. Twinning, as well as slip, is considered to follow a rate dependent formulation. The results of the simulations are compared to previously published in situ neutron diffraction data. Experimental results of the evolution of the texture and lattice strains under uniaxial tension/compression loading along the rolling, transverse, and normal direction of a piece of rolled Zircaloy-2 are compared with model predictions. The rate dependent formulation introduced is capable of correctly capturing the influence of slip and twinning deformation on lattice strains as well as texture evolution.  相似文献   

11.
Twinning has been incorporated into a crystal plasticity model with the regularized Schmid law. In order to account for the appearance of twin-related orientations, a new probabilistic twin reorientation scheme that maintains the number of reoriented grains consistent with the accumulated deformation by twinning within the polycrystalline element, has been developed. A hardening rule describing slip–twin interactions has been also proposed. Model predictions concerning material response and texture evolution have been analyzed for fcc materials of low stacking fault energy.  相似文献   

12.
We draw upon existing knowledge of twinning and slip mechanics to develop a diffraction analysis model that allows for empirical quantification of individual deformation mechanisms to the macroscopic behaviors of low symmetry and phase transforming crystalline solids. These methods are applied in studying elasticity, accommodation twinning, deformation twinning, and slip through neutron diffraction data of tensile and compressive deformations of monoclinic NiTi to ~18% true strain. A deeper understanding of tension–compression asymmetry in NiTi is gained by connecting crystallographic calculations of polycrystalline twinning strains with in situ diffraction measurements. Our analyses culminate in empirical, micromechanical quantification of individual elastic, accommodation twinning, deformation twinning, and slip contributions to the total macroscopic stress–strain response of a monoclinic material subjected to large deformations. From these results, we find that 20–40% of the total plastic response at high strains is due to deformation twinning and 60–80% due to slip.  相似文献   

13.
The predominant deformation mode during material failure is shear. In this paper, a crystal plasticity scheme for explicit time integration codes is developed based on a forward Euler algorithm. The numerical model is incorporated in the UMAT subroutine for implementing rate-dependent crystal plasticity model in LS-DYNA/Explicit. The sheet is modeled as a face centered cubic (FCC) polycrystalline aggregate, and a finite element analysis based on rate-dependent crystal plasticity is implemented to analyze the effects of three different strain paths consisting predominantly of shear. Finite element meshes containing texture data are created with solid elements. The material model can incorporate information obtained from electron backscatter diffraction (EBSD) and apply crystal orientation to each element as well as account for texture evolution. Single elements or multiple elements are used to represent each grain within a microstructure. The three dimensional (3D) polycrystalline microstructure of the aluminum alloy AA5754 is modeled and subjected to three different strain rates for each strain path. The effects of strain paths, strain rates and thermal softening on the formation of localized deformation are investigated. Simulations show that strain path is the most dominant factor in localized deformation and texture evolution.  相似文献   

14.
A finite element model of switching in polycrystalline ferroelastic ceramics is developed. It is assumed that a crystallite switches if the reduction in mechanically driven potential energy of the system exceeds a critical value per unit volume of switching material. Stress induced (i.e. ferroelastic) switching is a change of permanent strain in characteristic crystallographic directions. Martensitic twinning is one example, but the strain response of ferroelectric materials has the same characteristics. The model is suitable for representing ferroelastic systems such as shape memory alloys and as a preliminary model for ferroelectric/ferroelastic materials such as perovskite piezoelectrics. In the simulations, each crystallite is represented by a finite element and the crystallographic principal direction for each crystallite is assigned randomly. Different critical values for the energy barrier to switching are selected to simulate stress vs strain hysteresis loops of a ceramic lead lanthanum zirconate titanate (PLZT) at room temperature. The measured stress versus strain curves of polycrystalline ceramics designated PZT-A and PZT-B are also reproduced by the model.  相似文献   

15.
Complex, non-linear, irreversible, hysteretic behavior of polycrystalline ferroelectric materials under a combined electro-mechanical loading is a result of domain wall motion, causing simultaneous expansion and contraction of unlike domains, grain sub-divisions that have distinct spontaneous polarization and strain. In this paper, a 3-dimensional finite element method is used to simulate such a polycrystalline ferroelectric under electrical and mechanical loading. A constitutive law due to Huber et al. [1999. A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47, 1663-1697] for switching by domain wall motion in multidomain ferroelectric single crystals is employed in our model to represent each grain, and the finite element method is used to solve the governing conditions of mechanical equilibrium and Gauss's law. The results provide the average behavior for the polycrystalline ceramic. We compare the outcomes predicted by this model with the available experimental data for various electromechanical loading conditions. The qualitative features of ferroelectric switching are predicted well, including hysteresis and butterfly loops, the effect on them of mechanical compression, and the response of the polycrystal to non-proportional electrical loading.  相似文献   

16.
Mechanical behavior and microstructure evolution of polycrystalline copper with nano-twins were investigated in the present work by finite element simulations. The fracture of grain boundaries are described by a cohesive interface constitutive model based on the strain gradient plasticity theory. A systematic study of the strength and ductility for different grain sizes and twin lamellae distributions is performed. The results show that the material strength and ductility strongly depend on the grain size and the distribution of twin lamellae microstructures in the polycrystalline copper.  相似文献   

17.
This paper presents a comprehensive experimental and theoretical investigation of the deformation behavior of high-purity, polycrystalline α-titanium under quasi-static conditions at room temperature. The initial material in this study was a cross-rolled plate with a strong basal texture. To quantify the plastic anisotropy and the tension–compression asymmetry of this material, monotonic tensile and compressive tests were conducted, on samples cut along different directions of the plate. A new anisotropic elastic/plastic model was developed to describe the quasi-static macroscopic response of the aggregate. Key in its formulation is the use of an anisotropic yield criterion that captures strength-differential effects and an anisotropic hardening rule that accounts for texture evolution associated to twinning. A very good agreement between FE simulations using the model developed and uniaxial data was obtained.  相似文献   

18.
The tensile deformation response and texture evolution of aluminum alloyed Hadfield steel single crystals oriented in the 〈1 6 9〉 direction is investigated. In this material, the strain hardening response is governed by the high-density dislocation walls (HDDWs) that interact with glide dislocations. A microstructure-based visco-plastic self-consistent model was modified to account for mechanical twinning in addition to the prevailing contribution of the HDDWs. Simulations revealed the contribution of twinning to the overall work hardening at the later stages of deformation. Moreover, both the deformation response and the rotation of the loading axis associated with plastic flow are successfully predicted even at the high-strain levels attained (0.53). Predicting the texture evolution serves as a separate check for validating the model, motivating its utilization in single and polycrystals of other alloys that exhibit combined HDDWs and twinning.  相似文献   

19.
Evolution of properties during processing of materials depends on the underlying material microstructure. A finite element homogenization approach is presented for calculating the evolution of macro-scale properties during processing of microstructures. A mathematically rigorous sensitivity analysis of homogenization is presented that is used to identify optimal forging rates in processes that would lead to a desired microstructure response. Macro-scale parameters such as forging rates are linked with microstructure deformation using boundary conditions drawn from the theory of multi-scale homogenization. Homogenized stresses at the macro-scale are obtained through volume-averaging laws. A constitutive framework for thermo-elastic–viscoplastic response of single crystals is utilized along with a fully-implicit Lagrangian finite element algorithm for modelling microstructure evolution. The continuum sensitivity method (CSM) used for designing processes involves differentiation of the governing field equations of homogenization with respect to the processing parameters and development of the weak forms for the corresponding sensitivity equations that are solved using finite element analysis. The sensitivity of the deformation field within the microstructure is exactly defined and an averaging principle is developed to compute the sensitivity of homogenized stresses at the macro-scale due to perturbations in the process parameters. Computed sensitivities are used within a gradient-based optimization framework for controlling the response of the microstructure. Development of texture and stress–strain response in 2D and 3D FCC aluminum polycrystalline aggregates using the homogenization algorithm is compared with both Taylor-based simulations and published experimental results. Processing parameters that would lead to a desired equivalent stress–strain curve in a sample poly-crystalline microstructure are identified for single and two-stage loading using the design algorithm.  相似文献   

20.
探究软骨细胞机械负载下的力学特性对于理解软骨细胞的正常和病理状态以及骨性关节炎的病因至关重要. 基于软骨细胞有限元计算模型的力学响应与其本构参数之间的高度复杂非线性, 本文提出了分别利用双向深度神经网络TW-Deepnets模型和随机森林RF模型并结合有限元方法来识别软骨细胞本构参数的两种反演方法. 首先, 建立了软骨细胞的无侧限压缩实验有限元模型, 收集MSnHS本构参数空间点与对应的有限元计算模型的压缩反作用力响应数据集. 其次, 结合贝叶斯超参数优化算法搭建了用于软骨细胞本构参数反求的TW-Deepnets模型和RF模型, 对有限元收集的数据进行训练, 并利用单个软骨细胞受到50%压缩程度下的实验数据对软骨细胞的MSnHS本构参数进行了反求. 最后, 通过与实验曲线的对比验证了所提出的反演方法的有效性, 并引入决定系数R2对两种模型的预测准确性进行了对比评估, 检验了模型对各本构参数的预测性能, 分析了MSnHS本构模型中各参数影响软骨细胞力学响应的重要性占比. 结果表明, 本研究提出的本构参数反演方法能够有效获取软骨细胞的本构参数值, 从而准确描述软骨细胞的时间依赖性力学特性, 该方法也可进一步推广到生物细胞在静态或动态负载条件下的复杂参数反演问题.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号