首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soft materials and structures have recently attracted lots of research interests as they provide paramount potential applications in diverse fields including soft robotics, wearable devices, stretchable electronics and biomedical engineering. In a previous work, an Euler–Bernoulli finite strain beam model with thickness stretching effect was proposed for soft thin structures subject to stiff constraint in the width direction. By extending that model to account for the transverse shear effect, a Timoshenko-type finite strain beam model within the plane-strain context is developed in the present work. With some kinematic hypotheses, the finite deformation of the beam is analyzed, constitutive equations are deduced from the theory of finite elasticity, and by employing the standard variational method, the equilibrium equations and associated boundary conditions are derived. In the limit of infinitesimal strain, the new model degenerates to the classical extensible and shearable elastica model. The corresponding incremental equilibrium equations and associated boundary conditions are also obtained. Based on the new beam model, analytical solutions are given for simple deformation modes, including uniaxial tension, simple shear, pure bending, and buckling under an axial load. Furthermore, numerical solution procedures and results are presented for cantilevered beams and simply supported beams with immovable ends. The results are also compared with the previously developed finite strain Euler–Bernoulli beam model to demonstrate the significance of transverse shear effect for soft beams with a small length-to-thickness ratio. The developed beam model will contribute to the design and analysis of soft robots and soft devices.  相似文献   

2.
A finite strain formulation is developed for elastic circular arches and rings in which the effects of shear deformations are included. Timoshenko beam hypothesis is adopted for incorporating shear. Finite strains are defined in terms of the normal and shear component of the longitudinal stretch. The constitutive relations for stress and finite strain are based on a hyperelastic constitutive model. Virtual work and equilibrium equations are derived. Closed-form in-plane buckling solutions are developed for circular rings and high arches under hydrostatic pressure. The effects of axial deformation prior to buckling as well as shear deformations are included in the buckling analysis. The formulation developed is compared with solutions in the literature and to the predictions of the finite element package ANSYS. The importance of including the effects of shear deformations for deep arches is investigated.  相似文献   

3.
The equilibrium and buckling equations are derived for the lateral buckling of a prismatic straight beam. A consistent finite strain constitutive law is used, which is based on a hyperelastic model for an isotropic material. The kinematics of the cross-sectional deformations are based on a Timoshenko type beam displacement of the cross-sectional plane using Euler angles and two shear finite rotations coupled with warping taken normal to the displaced plane. Also derived are the second order approximations to the displacements, curvatures, twist and internal actions. The constitutive relationships for the internal actions reveal new coupling terms between the bending moments, torsion and bimoment, which are functions of the cross-sectional warping and shear deformations. New Wagner type nonlinear torsion terms are derived which are functions of the warping of the cross-sectional plane, and are coupled to the twisting and shear deformations of the cross-section. Solutions are determined for the lateral buckling of a prismatic monosymmetric beam under pure bending and the flexural–torsional buckling under axial compression. For the flexural–torsional buckling problem it is found that the Euler type column buckling formula is consistent with Haringx’s column buckling formula while the torsional buckling formula is different to conventional equations. The second variation of the total potential is also derived. The effects of shear deformations are explored by examining the non-dimensional lateral buckling equation for a simply supported beam.  相似文献   

4.
In the present paper, the isogeometric analysis (IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables (displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline (NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers.  相似文献   

5.
We study delamination in a sandwich panel due to transient finite plane strain elastic deformations caused by local water slamming loads and use the boundary element method to analyze motion of water and the finite element method to determine deformations of the panel. The cohesive zone model is used to study delamination initiation and propagation. The fluid is assumed to be incompressible and inviscid, and undergo irrotational motion. A layer-wise third order shear and normal deformable plate/shell theory is employed to simulate deformations of the panel by considering all geometric nonlinearities (i.e., all non-linear terms in strain–displacement relations) and taking the panel material to be St. Venant–Kirchhoff (i.e., the second Piola–Kirchhoff stress tensor is a linear function of the Green–St. Venant strain tensor). The Rayleigh damping is introduced to account for structural damping that reduces oscillations in the pressure acting on the panel/water interface. Results have been computed for water entry of (i) straight and circular sandwich panels made of Hookean materials with and without consideration of delamination failure, and (ii) flat sandwich panels made of the St. Venant–Kirchhoff materials. The face sheets and the core of sandwich panels are made, respectively, of fiber reinforced composites and soft materials. It is found that for the same entry speed (i) the peak pressure for a curved panel is less than that for a straight panel, (ii) the consideration of geometric nonlinearities significantly increases the peak hydrodynamic pressure, (iii) delamination occurs in mode-II, and (iv) the delamination reduces the hydroelastic pressure acting on the panel surface and hence alters deformations of the panel.  相似文献   

6.
In this paper a finite deformation constitutive model for rigid plastic hardening materials based on the logarithmic strain tensor is introduced. The flow rule of this constitutive model relates the corotational rate of the logarithmic strain tensor to the difference of the deviatoric Cauchy stress and the back stress tensors. The evolution equation for the kinematic hardening of this model relates the corotational rate of the back stress tensor to the corotational rate of the logarithmic strain tensor. Using Jaumann, Green–Naghdi, Eulerian and logarithmic corotational rates in the proposed constitutive model, stress–strain responses and subsequent yield surfaces are determined for rigid plastic kinematic and isotropic hardening materials in the simple shear problem at finite deformations.  相似文献   

7.
This study presents analyses of deformations in nonlinear viscoelastic beams that experience large displacements and rotations due to mechanical, thermal, and electrical stimuli. The studied beams are relatively thin so that the effect of the transverse shear deformation is neglected, and the stretch along the transverse axis of the beams is also ignored. It is assumed that the plane that is perpendicular to the longitudinal axis of the undeformed beam remains plane during the deformations. The nonlinear kinematics of the finite strain beam theory presented by Reissner [27] is adopted, and a nonlinear viscoelastic constitutive relation based on a quasi-linear viscoelastic (QLV) model is considered for the beams. Deformation in beams due to mechanical, thermal, and electric field inputs are incorporated through the use of time integral functions, by separating the time-dependent function and nonlinear measures of field variables. The nonlinear measures are formulated by including higher order terms of the field variables, i.e. strain, temperature, and electric field. Responses of beams under mechanical, thermal, and electrical stimuli are illustrated and the effects of nonlinear constitutive relations on the overall deformations of the beams are highlighted.  相似文献   

8.
李清禄  李世荣 《计算力学学报》2014,31(3):340-344,389
基于直法线假设,采用可伸长梁的几何非线性理论,建立了功能梯度材料弹性组合曲梁受切线均布随从力作用下的静态大变形数学模型。该模型不仅计及了轴线伸长,同时也精确地考虑了梁的初始曲率对变形的影响以及轴向变形与弯曲变形之间的耦合效应。用打靶法数值求解了由金属和陶瓷两相材料所构成的一种FGM组合曲梁在沿轴线均布切向随动载荷作用下的非线性平面弯曲问题,给出了不同梯度指标下FGM弹性曲梁随载荷参数大范围变化的平衡路径,并与金属和陶瓷两种单相材料曲梁的相应特性进行了比较。  相似文献   

9.
The in-plane buckling behavior of funicular arches is investigated numerically in this paper. A finite strain Timoshenko beam-type formulation that incorporates shear deformations is developed for generic funicular arches. The elastic constitutive relationships for the internal beam actions are based on a hyperelastic constitutive model, and the funicular arch equilibrium equations are derived. The problems of a submerged arch under hydrostatic pressure, a parabolic arch under gravity load and a catenary arch loaded by overburden are investigated. Buckling solutions are derived for the parabolic and catenary arch. Subsequent investigation addresses the effects of axial deformation prior to buckling and shear deformation during buckling. An approximate buckling solution is then obtained based on the maximum axial force in the arch. The obtained buckling solutions are compared with the numerical solutions of Dinnik (Stability of arches, 1946) [1] and the finite element package ANSYS. The effects of shear deformation are also evaluated.  相似文献   

10.
11.
12.
The bending analysis of functionally graded carbon nanotube (CNT) reinforced doubly curved singly ruled truncated rhombic cone is investigated. In this study, a simple C0 isoparametric finite element formulation based on third order shear deformation theory is presented. To characterize the membrane-flexure behavior observed in a CNT reinforced truncated rhombic cone, a displacement field involving higher-order terms in in-plane fields is considered. The proposed kinematics field incorporates for transverse shear deformation and nonlinear variation of the in-plane displacement field through the thickness to predict the overall response of the CNT reinforced truncated rhombic cone in an accurate sense. The material properties of the CNT reinforced truncated rhombic cone are estimated according to the rule of mixture. The present model eliminates the need of shear correction factor and imposed zero-transverse shear strain at upper and lower surface of the truncated rhombic cone. The new feature in present model is simultaneous inclusion of twist curvature in strain field as well as curvature in displacement field that makes it suitable for moderately thick and deep truncated rhombic cone. The proposed new mathematical model is implemented in finite element code written in FORTRAN. The proposed model has been validated with analytical, experimental, and finite element results from the literature. This is first attempt to study bending response of CNT reinforced doubly curved singly ruled truncated rhombic cone. The effect of CNT distribution, boundary condition, loading pattern, and other geometric parameters are also examined.  相似文献   

13.
An appropriate strain energy density for an isotropic hyperelastic Hookean material is proposed for finite strain from which a constitutive relationship is derived and applied to problems involving beam theory approximations. The physical Lagrangian stress normal to the surfaces of a element in the deformed state is a function of the normal component of stretch while the shear is a function of the shear component of stretch. This paper attempts to make a contribution to the controversy about who is correct, Engesser or Haringx with regard to the buckling formula for a linear elastic straight prismatic column with Timoshenko beam-type shear deformations. The derived buckling formula for a straight prismatic column including shear and axial deformations agrees with Haringx’s formula. Elastica-type equations are also derived for a three-dimensional Timoshenko beam with warping excluded. When the formulation is applied to the problem of pure torsion of a cylinder no second-order axial shortening associated with the Wagner effect is predicted which differs from conventional beam theory. When warping is included, axial shortening is predicted but the formula differs from conventional beam theory.  相似文献   

14.
IntroductionInrecentyears,fiber_reinforcedcompositelaminatedpanelshavebeenwidelyusedintheaerospace,marine ,automobileandotherengineeringindustries .Theproblemofbucklingandpostbucklingofcylindricalpanelsunderaxialcompressionortorsionhasbeenextensivelystudied .Incontrast,theliteratureoncylindricalpanelsunderpressureloadingisrelativelyspares.Thesestudiesincludealinearbucklinganalysis (Singeretal.[1]) ,anonlinearbucklinganalysi(YamadaandCroll[2 ]) ,anelastoplasticbucklinganalysisusingreducedstif…  相似文献   

15.
A geometrically non-linear theory is developed for shells of generic shape allowing for third-order thickness and shear deformation and rotary inertia by using eight parameters; geometric imperfections are also taken into account. The geometrically non-linear strain–displacement relationships are derived retaining full non-linear terms in all the 8 parameters, i.e. in-plane and transverse displacements, rotations of the normal and thickness deformation parameters; these relationships are presented in curvilinear coordinates, ready to be implemented in computer codes. Higher order terms in the transverse coordinate are retained in the derivation so that the theory is suitable also for thick laminated shells. Three-dimensional constitutive equations are used for linear elasticity. The theory is applied to circular cylindrical shells complete around the circumference and simply supported at both ends to study initially static finite deformation. Both radially distributed forces and displacement-dependent pressure are used as load and results for different shell theories are compared. Results show that a 6 parameter non-linear shell theory is quite accurate for isotropic shells. Finally, large-amplitude forced vibrations under harmonic excitation are investigated by using the new theory and results are compared to other available theories. The new theory with non-linearity in all the 8 parameters is the only one to predict correctly the thickness deformation; it works accurately for both static and dynamics loads.  相似文献   

16.
Internal dissipation always occurs in irreversible inelastic deformation processes of materials. The internal dissipation inequalities (specific mathematical forms of the second law of thermodynamics) determine the evolution direction of inelastic processes. Based on different internal dissipation inequalities several finite strain inelastic constitutive laws have been formulated for instance by Simo [Simo, J.C., 1992. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Computer Methods in Applied Mechanics and Engineering 99, 61–112]; Simo and Miehe [Simo, J.C., Miehe, C., 1992. Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Computer Methods in Applied Mechanics and Engineering 98, 41–104]; Lion [Lion, A., 1997. A physically based method to represent the thermo-mechanical behavior of elastomers. Acta Mechanica 123, 1–25]; Reese and Govindjee [Reese, S., Govindjee, S., 1998. A theory of finite viscoelasticity and numerical aspects. International Journal of Solids and Structures 35, 3455–3482]; Lin and Schomburg [Lin, R.C., Schomburg, U., 2003. A finite elastic–viscoelastic–elastoplastic material law with damage: theoretical and numerical aspects. Computer Methods in Applied Mechanics and Engineering 192, 1591–1627]; Lin and Brocks [Lin, R.C., Brocks, W., 2004. On a finite strain viscoplastic theory based on a new internal dissipation inequality. International Journal of Plasticity 20, 1281–1311]; and Lin and Brocks [Lin, R.C., Brocks, W., 2005. An extended Chaboche’s viscoplastic law at finite strains: theoretical and numerical aspects. Journal of Materials Science and Technology 21, 145–147]. These constitutive laws are consistent with the second law of thermodynamics. As the internal dissipation inequalities are described in different configurations or coordinate systems, the related constitutive laws are also formulated in the corresponding configurations or coordinate systems. Mathematically, these constitutive laws have very different formulations. Now, a question is whether the constitutive laws provide identical constitutive responses for the same inelastic constitutive problems. In the present work, four types of finite strain viscoelastic and endochronically plastic laws as well as three types of J2-plasticity laws are formulated based on four types of dissipation inequalities. Then, they are numerically compared for several problems of homogeneous or complex finite deformations. It is demonstrated that for the same inelastic constitutive problem the stress responses are identical for deformation processes without rotations. In the simple shear deformation process with large rotation, the presented viscoelastic and endochronically plastic laws also show almost identical stress responses up to a shear strain of about 100%. The three laws of J2-plasticity also produce the same shear stresses up to a shear strain of 100%, while different normal stresses are generated even at infinitesimal shear strains. The three J2-plasticity laws are also compared at three complex finite deformation processes: billet upsetting, cylinder necking and channel forming. For the first two deformation processes similar constitutive responses are obtained, whereas for the third deformation process (with large global rotations) significant differences of constitutive responses can be observed.  相似文献   

17.
This article presents a novel mathematical model for moderately thick and deep laminated composite conoidal shell. The zero transverse shear stress at top and bottom of conoidal shell conditions is applied. Novelty in the present formulation is the inclusion of curvature effect in displacement field and cross curvature effect in strain field. This present model is suitable for deep and moderately thick conoidal shell. The peculiarity in the conoidal shell is that due to its complex geometry, its peak value of transverse deflection is not at its center like other shells. The C1 continuity requirement associated with the present model has been suitably circumvented. A nine-node curved quadratic isoparametric element with seven nodal unknowns per node is used in finite element formulation of the proposed mathematical model. The present model results are compared with experimental, elasticity, and numerical results available in the literature. This is the first effort to solve the problem of moderately thick and deep laminated composite conoidal shell using parabolic transverse shear strain deformation across the thickness of conoidal shell. Many new numerical problems are solved for the static study of moderately thick and deep laminated composite conoidal shell considering 10 different practical boundary conditions, four types of loadings, six different hl/hh (minimum rise/maximum rise) ratios, and four different laminations.  相似文献   

18.
For the cases of using the finite curved beam elements and taking the effects of both the shear deformation and rotary inertias into consideration, the literature regarding either free or forced vibration analysis of the curved beams is rare. Thus, this paper tries to determine the dynamic responses of a circular curved Timoshenko beam due to a moving load using the curved beam elements. By taking account of the effect of shear deformation and that of rotary inertias due to bending and torsional vibrations, the stiffness matrix and the mass matrix of the curved beam element were obtained from the force–displacement relations and the kinetic energy equations, respectively. Since all the element property matrices for the curved beam element are derived based on the local polar coordinate system (rather than the local Cartesian one), their coefficients are invariant for any curved beam element with constant radius of curvature and subtended angle and one does not need to transform the property matrices of each curved beam element from the local coordinate system to the global one to achieve the overall property matrices for the entire curved beam structure before they are assembled. The availability of the presented approach has been verified by both the existing analytical solutions for the entire continuum curved beam and the numerical solutions for the entire discretized curved beam composed of the conventional straight beam elements based on either the consistent-mass model or the lumped-mass model. In addition to the typical circular curved beams, a hybrid curved beam composed of one curved-beam segment and two identical straight-beam segments subjected to a moving load was also studied. Influence on the dynamic responses of the curved beams of the slenderness ratio, moving-load speed, shear deformation and rotary inertias was investigated.  相似文献   

19.
A phenomenological definition of classical invariants of strain and stress tensors is considered. Based on this definition, the strain and stress invariants of a shell obeying the assumptions of the Reissner–Mindlin plate theory are determined using only three normal components of the corresponding tensors associated with three independent directions at the shell middle surface. The relations obtained for the invariants are employed to formulate a 15-dof curved triangular finite element for geometrically nonlinear analysis of thin and moderately thick elastic transversely isotropic shells undergoing arbitrarily large displacements and rotations. The question of improving nonlinear capabilities of the finite element without increasing the number of degrees of freedom is solved by assuming that the element sides are extensible planar nearly circular arcs. The shear locking is eliminated by approximating the curvature changes and transverse shear strains based on the solution of the Timoshenko beam equations. The performance of the finite element is studied using geometrically linear and nonlinear benchmark problems of plates and shells.  相似文献   

20.
While there is a major body of literature relating the non-linear response of both elastomers and polymer melts with the molecular structure and topology of the chains, the same cannot be said of the non-linear response, especially that below the yield point, for polymer glasses. Here we take an approach that uses ideas of finite deformation elasticity and apply them to the isochronal response of glassy polymers in torsional deformations. We find that, while the torsional (shear) responses are similar for different molecular structures, there seems to be a strong effect of side group relaxations on the normal forces. The results are discussed in terms of the strain energy density function and the opportunities for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号